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Abstract 

Empirical studies of the determinants of flight delays typically take into consideration factors such 

as weather, airport and air traffic characteristics, competition, seasonality and secular effects. An 

unexplored factor in this literature is the effect of the Performance Based Navigation (PBN) concept. 

PBN is an advanced, satellite-enabled form of air navigation that creates precise and shorter 3-D 

flight paths. These new procedures can improve air traffic flow and increase airspace capacity, 

possibly reducing flight times and delays. This paper provides an econometric model to test the 

impacts of PBN on the average flight times of airlines in the domestic air transport industry of Brazil. 
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1. Introduction 

 

The present paper empirically investigates potential determinants of increased flight times with 

special attention to the effects of the Performance Based Navigation (PBN) concept implementation. 

On time performance is a key point for measuring the efficiency and level of service of airlines, air 

navigation service providers (ANSPs), and airports. Besides that, flight delays bring a set of 

undesired consequences to air transport, such as extra costs to airlines and passengers, and airspace 

and airport constraints. According to FAA (2018), the cost to an airline for one hour of delay ranges 

from about $1,400 to $4,500, with the value of passenger time ranging from $35 to $63 per hour. 

Ball et al. (2010) estimates the cost of delays in US domestic market, that hit $32.9 billion in 2007. 

According to Eurocontrol (2019), the European air space network generated a total of 19.1 million 

minutes of en route delay in 2018 (up 105% on 2017)1. Thus, the investigation of causes of flight 

delays along with means of mitigating them is essential to improve air transport quality.  

Means of mitigating these costs include Air Traffic Management (ATM) improvements, with new 

technologies and operational concepts, like PBN. According to FAA, its NextGen program has 

already delivered $4.7 billion in benefits to passengers and airlines, being over $2 billion accounted 

to PBN procedures2. Such benefits were achieved with shorter and more precise flight paths, 

reducing travel times, delays and fuel consumption. 

In Brazil, the Department of Air Traffic Control (DECEA), the Brazilian ANSP, started PBN 

implementations in 2009, and eight of the most demanded Terminal Maneuvering Areas (TMAs) 

are already equipped, besides routes in the south region and between Rio de Janeiro and São Paulo.  

According to DECEA straighter flight paths enable flight time reductions of eight minutes between 

São Paulo/Congonhas Airport (CGH) and Rio de Janeiro/Santos Dumont (SDU) and eleven minutes 

between CGH and Brasília (BSB)3. 

However, the real effects of PBN implementations are still undefined in literature. Thus, this paper 

develops an econometric model of flight times and their influencing factors, with special attention 

to the effects of the PBN concept implementation. For that, we analyze flights in the Brazilian 

domestic market pre and post implementations, with data from 2000 to 2018.  Most factors 

 

1 “2018’s air traffic in a nutshell” – EUROCONTROL news, Jan, 10th, 2019. 
2 “NextGen by the Numbers” – FAA, May, 3td, 2018. 
3 Source: DECEA, Sirius | PBN: Fase RJ/SP. 
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considered in the model were identified in literature, such as airport characteristics, demand, market 

concentration, fuel price, slot coordination, and secular effects. Many studies have used econometric 

models to estimate the causes of flight delays, such as Mayer and Sinai (2003), Hansen & Hsiao 

(2005), Bendinelli, Bettini & Oliveira (2016) and Santos & Robin (2010), as presented in the 

following section. However, to the best of our knowledge, only Guzhva, Abdelghany and Lipps 

(2014) investigated the effects of improvements in Air Traffic Management (ATM) on flight times 

through an econometric model. 

The remainder of the paper is divided as follows. Section 2 presents the discussion of the literature 

on determinants of flight delays and a brief explanation about PBN. Section 3 presents the empirical 

model. Section 4 presents the estimation results and discussions, which is followed by the 

conclusions. 

2. Literature Review 

Many studies have applied econometrics to investigate the causes of flight delays. Two main 

strands were identified on this literature, one focused on flight-related factors and another on market 

characteristics. Most papers employ proxies for possible flight disruption determinants such as 

weather conditions and airspace and airport congestion.  Hansen & Hsiao (2005) estimate an 

econometric model of average daily arrival delay that incorporates the effects of arrival queuing, 

weather, seasonal effects, and secular effects. Their results suggest that there was a steady decline 

in delays from 2000 through early 2003 and a worsened scenario in late 2003 and early 2004, in the 

United States’ National Airpace System (NAS). Some important factors like aircraft mix were not 

considered.  

In Hansen & Hsiao (2006), queuing delays at different times of the day, general aviation, military 

traffic and volume of scheduled arrivals (as opposed to completed ones) were added to the model. 

Besides that, they suggest that weather impacts on delays may not be determined by weather itself, 

as was assumed in the first model, but by the interaction between the volume of scheduled arrivals 

and weather conditions. The results indicate that 31% of the total delay increase between early 2004 

and early 2005 can be attributed to traffic growth and decreased queuing delay was the primary 

reason delays decreased between the first half of 2000 and the first half of 2005.  
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An innovative delay metric to cope with the distortions created by schedule padding4 is presented 

in Hansen & Xiong (2007). Besides that, they analyze for the first time the impacts of weather 

forecast accuracy. Their results indicate that over-forecasting is the source of about 20% of total 

delay.  

Lall (2018) uses a count regression model to study delays at the three New York city area airports, 

examining different causal factors of the hourly number of delayed flights. Results are reported 

separately for each airport and demonstrate significant difference among them. In general terms, the 

most important factors for explaining delay are weather conditions, specially thunderstorms, peak 

hours, delayed departures and share of heavy aircraft operations. 

Borsky & Unterberger (2019) estimate the effects of sudden and slow onset weather events on 

flight departure delays. For sudden onset events, a difference-in-difference framework is used, 

allowing for inferences at the hourly level. For slow onset events a Prais Winstein estimator with 

panel-corrected standard errors is used. Results indicate that weather shocks like rainfall, snow and 

wind (sudden events) have a significant impact on departure delays within the U.S. aviation system. 

Regarding slow onset weather shocks, results suggest that cold conditions lead to additional 

departure delays. 

Because of complex interactions among causal factors and their relationship and their nonlinear 

relationship with flight delays, Xu, Sherry, & Laskey (2008) develop multifactor models, using 

multivariate adaptive regression splines, for predicting airport delays in 15-min periods at 34 

airports. Rodríguez et al. (2017) predict daily probabilities of arrival and departure delays. The main 

results indicate that the departure delay, the size of the airline, the size of the airport and the day of 

the flight (Tuesdays and weekends) are statistically significant factors to explain the probability of 

arrival delay. 

Combining logistic and quantile regression methods, Wang & Vaze (2016) models the probability 

distributions of flight delays. The method enabled new inferences about delays. For instance, 

although the positive delay probability is found to be similar for low-cost and legacy carriers, longer 

delays are significantly less probable for the low-cost carriers. Besides that, while seasonality and 

time-of-day factors explain over half the variation in the positive delay probabilities, they explain 

very little of the variation in higher delay quantiles. Airport factors, however, explain probabilities 

of longer delays far better than they explain the positive delay probabilities. Differences were also 

 

4 Airlines’ practice of scheduling extra time (buffer) than really needed for the trip. 
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evident when delays are caused by congestion in U.S National Airspace System (NAS) or by the 

airline. 

On the other strand of literature, concerned with market characteristics, Rupp, Owens & Plumly 

(2001) analyze the relationship between route competition and on time performance with data from 

U.S. market in the period of 1997-2000. They find that more competitive routes experienced more 

flight delays. Seasonal effects, airport capacity constraints, demand and hubbing effects were also 

important factors. Mazzeo (2003), however, found that market concentration in positively correlated 

with worse on time performance, especially if only one airline operates on a route. Other important 

factors to explain flight delays were weather, congestion, and scheduling decisions. 

 Mayer & Sinai (2003) also investigated the US market, in the period of 1988–2000. Their results 

indicate that congestion externalities cause modest levels of air traffic delays and hubbing is the 

main economic contributor to air traffic congestion. Besides that, hub airlines themselves incur all 

the delay caused by hubbing. Santos & Robin (2010) follow a similar methodology for the European 

market. Factors analyzed were airport and airline fixed effects, airport concentration, slot 

coordination, demand and seasonal effects. Opposed to Mayer & Sinai (2003) their results indicate 

that while delays are higher at hub airports, hub airlines experience lower delays.  

Bendinelli, Bettini & Oliveira (2016) investigate determinants of flight delays in Brazil, also with 

special attention to competition and dominance at both the route and airport levels. Results indicate 

self-internalization of congestion by hub airlines and a positive relationship between delays and 

route concentration. Aydemir et al. (2017) investigate flight delays in Turkey and their results are 

also consistent with the internalization hypothesis on domestic routes. 

Prince & Simon (2009) explore the impact of multimarket contact on flight delays. Results show 

that multimarket contact increases delays and that this effect is greater for contacts on more 

concentrated routes, although the effect diminishes on highly concentrated routes. Deshpande & 

Arıkan (2012) examine causes of flight delays with special attention to the impact of scheduled 

block time.  

Regarding the impacts of an air traffic optimization specifically, Guzhva, Abdelghany & Lipps 

(2014) evaluate the implementation of an Aircraft Arrival Management System (AAMS) with a 

regression model. The AAMS was implemented for only 6.5% of an airline’s arrivals at Charlotte-

Douglas International Airport (CLT) and this relatively low percentage of flights was not enough to 
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provide a noticeable change in the overall NAS on time performance. However, the participating 

flights indeed experienced lower dwell times by 43s in terminal area.  

Despite the wide range of factors considered in the previous literature, to the best of our 

knowledge, the effects of Performance Based Navigation (PBN) remains unexplored in the 

econometric literature of flight delays. The PBN concept implementation is a number one priority 

of ICAO’s Global Air Navigation Plan and one of its expected operational benefits is flight delay 

reductions. The PBN concept represents a change from flight trajectories based on ground navigation 

aids to trajectories based on the performance of a set of navigation systems that enable the creation 

of waypoints to mark out any desired route. PBN provides for more efficient design of airspace and 

procedures which collectively result in improved safety, capacity, predictability, operational 

efficiency, and environmental impacts. Specifically, improved access and flexibility help to enhance 

reliability and reduce delays by defining more precise terminal area procedures. The concept is 

divided into two specifications: Area Navigation (RNAV) and Required Navigation Performance 

(RNP). The difference is that RNP procedures require an onboard performance monitoring and 

alerting capability.  Each RNAV or RNP procedure receives a numeral designation that represents 

its lateral navigation accuracy in nautical miles. RNP 1, for instance, indicates that the aircraft must 

maintain its path with one nautical mile of lateral accuracy for 95% of the time (ICAO, 2013; FAA, 

2014; Nakamura & Royce 2008). 

Therefore, the present paper develops an econometric model of flight times, based on the 

methodology of the presented literature, but adding new variables to capture the effects of PBN. 

3. Research design 

3.1 Application 

The PBN concept has been implemented in Brazilian Terminal Maneuvering Areas (TMAs) since 

2009, according to the Aeronautical Information Circulars (AICs) issued by the Department of Air 

Traffic Control (DECEA), the Brazilian ANSP. First implementations occurred in the Terminal 

Maneuvering Areas (TMAs) of Brasília, Recife, São Paulo and Rio de Janeiro (2009), followed by 

Belo Horizonte in (2015) and the south region in 2017. Figure 1 is a map showing where PBN was 

implemented. Circle sizes represent frequency of routes from a city. Table 1 shows the yearly 

number of city-pairs with PBN at both endpoint cities, only at origin, and only at destination. 
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Table 1 – PBN distribution over the years 

 PBN at orig. and dest. PBN at orig. PBN at dest. 

YEAR 0 1 Total 0 1 Total 0 1 Total 

2000 6491 0 6491 6491 0 6491 6491 0 6491 

2001 6106 0 6106 6106 0 6106 6106 0 6106 

2002 5476 0 5476 5476 0 5476 5476 0 5476 

2003 4889 0 4889 4889 0 4889 4889 0 4889 

2004 5005 0 5005 5005 0 5005 5005 0 5005 

2005 5587 0 5587 5587 0 5587 5587 0 5587 

2006 5373 0 5373 5373 0 5373 5373 0 5373 

2007 5782 0 5782 5782 0 5782 5782 0 5782 

2008 6047 0 6047 6047 0 6047 6047 0 6047 

2009 6317 0 6317 6317 0 6317 6317 0 6317 

2010 6615 38 6653 6046 607 6653 6062 591 6653 

2011 7396 144 7540 5986 1554 7540 6010 1530 7540 

2012 7192 144 7336 5812 1524 7336 5811 1525 7336 

2013 6575 144 6719 5173 1546 6719 5174 1545 6719 

2014 5110 120 5230 3925 1305 5230 3927 1303 5230 

2015 6515 160 6675 4918 1757 6675 4923 1752 6675 

2016 6079 240 6319 4120 2199 6319 4131 2188 6319 

2017 6017 328 6345 4080 2265 6345 4101 2244 6345 

2018 6088 597 6685 4015 2670 6685 4034 2651 6685 

Total 114660 1915 116575 101148 15427 116575 101246 15329 116575 

 

Figure 1 - PBN terminals 
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PBN implementations are expected to reduce flight times through improved use of airspace, with 

more direct routes and airspace capacity (ICAO, 2013). Thus, we assume that the most appropriate 

metric to measure PBN real effects is flight time, or flight duration. Figure 2 shows the average 

flight times from 2008 to 2018 in minutes. For consistency, the data used in Figure 2 include only 

routes where we observe flights in each month of the entire period. The average flight time increased 

approximately five minutes from 2011 until mid-2014 when it started to decrease. This increase 

might be attributed to the adaptation period to the new procedures after PBN implementations and 

airspace restructuration in the TMAs of Brasília, Recife, São Paulo and Rio de Janeiro. However, 

this assumption requires further and more detailed analysis, since flight times depend on a wide 

range of factors. In this paper we consider that flight duration depends on six sets of variables: flight 

operations & costs, airports, competition, ANSP’s measures, delays and routes fixed effects, that are 

discussed in the following sections. 

Figure 2 - Average Flight Times 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Data 

Our data set consists of a panel data of domestic directional city-pairs in Brazil from January 2000 
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scheduled flights in the country in the Active Scheduled Flight Report (VRA). That dataset includes 

records of flight level data of carriers, airport-pairs, flight numbers, scheduled and actual departure 

and arrival times, and the justification code reported for each delayed and cancelled flight. The 

original VRA data is aggregated to form a city-pair/month data set. Only direct flights are 

considered. That leaves us with 116 575 observations of 1560 directional city-pairs, along 228 

months. The PBN implementations are considered according to the Aeronautical Information 

Circulars (AICs) published by the Brazilian ANSP, DECEA.  

3.3 Econometric model 

The model employed in this paper (1) follows a similar specification of previous literature like 

Rupp, Owens & Plumly (2001), Mayer & Sinai (2003), Mazzeo (2003), Santos & Robin (2010).  

Our dependent variable is the natural logarithm of average flight times on city-pair k in month t.   

This variable is calculated with gate-to-gate time, including, therefore, taxi times. It is regressed 

against the six groups of variables, described in this section.   

 lnFLTIMEkt  =   β1 DENSITYkt + β2 FREQkt + β3 LFkt +  β4 FUELPkt +                             

β5 TURBOPROPkt + β6 NET_15_44kt + β7  NET_45_69kt +                        

β8 NET_70kt + β9 CON_10_20kt + β10 CON_20_30kt  +                           

β11 CON_30kt  +  β12 SLOTPRkt  + β13 HHIkt +  β14 MAXHHIkt +                        

β15 MAXDELkt +  β16 PBNkt + γk + γt + ukt, 

where k is the directional city-pair, (k = 1, …., 4161 routes), and t denotes the time period (t = 1, 

..., 228 months).  

Regressors: flight operations & costs 

• DENSITYkt is the total number of revenue passengers on a city-pair k in month t, divided by 

10000.  With this variable we intend to capture the effects of airport demand, since flights in 

highly demanded airports generally require more time on the ground and terminal airspace. 

• FREQkt is the total number of direct scheduled flights in route k and time t, divided by 100. 

This variable captures the effects of airspace demand and service frequency. This variable can 

indicate if more frequently flown routes have any type of privilege in air traffic management.  

• LFkt is the division of Revenue Passengers Kilometer (RPK) by Available Seats Kilometer 

(ASK). It captures how loaded airplanes were in city-pair k and month t.  

(1) 
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• FUELPkt is a proxy for fuel price. It is an approximation of the ICMS5 in each state plus the 

average gravitational price of the fuel at the distributor in the states. 

• ASIZEkt is a proxy for aircraft size. It is the total number of passengers divided by total take-

offs. Since bigger airplanes, in general, fly faster, we expect the sign of this variable to be 

negative.   

• TURBOPROPkt measures the proportion of turboprop aircrafts in route k and month t. As 

turboprops fly at slower airspeeds, we expect the sign of this variable to be positive. 

• In model number 4 we exclude variable TURBOPROPkt and add the proportion of each 

aircraft type in route k and time t.  

• SLOTPRkt is a dummy variable that indicates that an airport in city-pair k was slot-controlled 

in time t. Since airlines are more encouraged to keep on time performance in slot-controlled 

airports, we expect this variable to have some influence on flight time, with a negative sign. 

Regressors: airports 

Following Mayer & Sinai (2003) and Santos & Robin (2010) we divide cities by the number of 

destinations served from the airports of that city. We use the maximum value in the city-pair, from 

origin or destination.  

• NET_15_44kt is a dummy variable that indicates that flights arrived at or departed from cities 

where airports serve from 15 to 44 destinations. NET_45_69kt is used for cities with 45 to 69 

destinations and NET_70kt for over 70 destinations. Our baseline case are cities that connect 

to up to 14 other cities. 

Despite being a reasonable proxy for the size and complexity of an airport, the NET variables do 

not account for hubbing effects. We measure the level at which an airport operates as a hub by the 

number of passengers in connection. As with the NET variables, we use only the maximum value 

in the city-pair, from origin or destination. 

• CON_10_20kt is a dummy variable that indicates that between 10 and 20% of passengers in a 

city’s airports are in connection. We similarly have CON_20_30kt, and CON_30kt when over 

30% of passengers are in connection. 

 

5 ICMS is a tax on movement of goods and services that varies among the Brazilian states. 
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Regressors: competition & dominance 

• HHIkt is the Herfindahl-Hirschman index of concentration of revenue passengers of city-pair 

k on time t. This variable captures the effect of airline market dominance at the route level. 

• MAXHHIkt is the maximum Herfindahl-Hirschman index of concentration between the 

endpoint cities of city-pair k and time t. We intend to capture the effect of dominance at the 

airport level with this variable.  

Regressors: delays 

• MAXDELkt is the maximum proportion of delayed flights between the endpoint cities   of 

city-pair k and time t. Since delays can increase flight time, if they occur during flight 

operation, we expect this variable to positively influence flight time. This variable is also a 

proxy for congestion and adverse meteorological conditions, since they are the mains causes 

of delays reported in literature. This variable is used only in the baseline model. For the three 

following models we substitute it for delays at origin and destination, separately, using 

DELOkt and DELDkt, respectively. 

Regressors: PBN 

• PBNkt indicates that city-pair k in time t had PBN operations at both endpoints. PBNOkt 

indicates PBN operations only in the origin city and PBNDkt, similarly, in the destination city. 

Fixed effects and disturbances 

• γk are the city-pair fixed effects; γt are time fixed effects (two-way fixed effects model); the 

β’s are unknown parameters; ukt is the associated error term. 

Table 2 presents descriptive statistics of the main variables of our empirical model. Henceforth 

indices k and t are omitted. 
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Table 2 – Descriptive statistics 

Variable Mean SD Min. Max. 

FLTIME 87.932 46.822 10.000 280.500 
DENSITY 0.930 2.439 0.000 44.059 
LF 0.635 0.173 0.122 0.953 
FREQ 0.112 0.253 0.001 4.112 
ASIZE 100.869 52.469 8.918 207.455 
FUELP 2.428 0.628 1.060 4.187 
TURBOPROP 0.403 0.466 0.000 1.000 
NET_15_44 0.401 0.490 0.000 1.000 
NET_45_69 0.236 0.424 0.000 1.000 
NET_70 0.196 0.397 0.000 1.000 
CON_10_20 0.332 0.471 0.000 1.000 
CON_20_30 0.251 0.434 0.000 1.000 
CON_30 0.246 0.431 0.000 1.000 
SLOTPR 0.116 0.249 0.000 1.000 
HHI 0.741 0.268 0.206 1.000 
MAXHHI 0.593 0.273 0.223 1.000 
MAXDEL 0.192 0.095 0.000 1.000 
DELO 0.161 0.092 0.000 1.000 
DELD 0.161 0.092 0.000 1.000 
PBN 0.016 0.127 0.000 1.000 
PBNO 0.132 0.339 0.000 1.000 
PBND 0.131 0.338 0.000 1.000 

 

3.4. Estimation strategy 

We employed the Least Square Dummy Variables estimator with fixed effects for each month t 

and city-pair k.  Standard errors are corrected for heteroscedasticity and autocorrelation with the 

Newey-West estimator. A Wald test was performed to the coefficients of the aircraft mix variables 

and the null hypothesis was rejected, indicating that these coefficients are not simultaneously equal 

to zero. 

4. Results and discussion 

Table 3 presents the main estimation results. Column (1) is our baseline model. In Column (2) we 

substitute MAXDEL for DELO and DELD. In Column (3) we substitute PBN for PBNO and PBND. 

Finally, in Column (4), we add controls for the proportion of flights by each aircraft type - the aircraft 

mix - and thus drop TURBOPROP. 

Regarding flight operations and costs, all variables are statistically significant at the 1% level. 

Results indicate that routes with more passengers experience longer flight times, which may be 

associated with the complexity of flight operations due to increased traffic. The results for LF, 
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SLOTPR and FREQ suggest that airlines make some effort to keep flights on schedule, adjusting 

flight speeds, when the direct cost of delay increases. The inherent capacity constraints of slot-

controlled airports facilitate the propagation of delays to later flights. Besides that, a high proportion 

of delays may cause airlines to lose their slots. Moreover, delays in more loaded flights represent 

more passengers missing their connections.  

Regarding aircraft characteristics, ASIZE and TURBOPROP are statistically significant with the 

expected signs. The estimate of ASIZE indicates that the average size of the aircraft mix of a route 

has a small negative effect on average flight times. This small effect of aircraft size is expected since 

the proportion of turboprop aircrafts, that are smaller and slower, is also in the model (Columns 1 to 

3). In Column 4 the proportion of each aircraft type is used, controlling for performance differences 

among aircraft types.  

The fuel price proxy is statistically significant and has a negative sign, which is a puzzling result, 

since airlines can manage their cost index. Cost index is the ratio of the time-related cost of an 

airplane operation, such as crew wages and maintenance hours, and the cost of fuel. Thus, if fuel 

price is higher, airlines can choose to fly at slower airspeeds to burn less fuel but spending more 

time. If fuel prices are lower, airlines can fly faster, burning more fuel, but reducing time-related 

costs (Roberson, 2007). A possible explanation for this result might be the occurrence of a practice 

known as “fuel tankering”, which is a way to lower the fuel cost by refueling at departures where 

the fuel price is lower than at the destination of the flight. 

The variable NET_15_44 has a negative sign, indicating that flights in medium airports are 

generally faster than those in small ones, with up to 14 destinations. A possible reason is that small 

airports usually do not provide Air Traffic Control (ATC) and operate under visual flight rules, 

which forces pilots to follow the entire visual circuit pattern in low speeds. In medium airports, 

where ATC is provided, but demand is much lower than capacity most of the time, flights may be 

vectorized more frequently. Cities with connection with 45 to 69 other cities do not show statistically 

significant difference against the baseline case. In big airports, with more than 70 destinations, as 

expected, flights take longer, probably because of traffic complexity and taxi times. Such estimates 

suggest that the relationship of the NET variables and flight times follow a quadratic function with 

concave up. 

The proxies to capture hubbing effects all have positive signs, as expected, and show that flight 

times increase with the number of passengers in connection. Such results indicate that airlines cluster 

their flights in small time periods to serve as many connecting passengers as possible and reduce 
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their total trip time. However, that practice may cause congestion or at least increase traffic 

complexity at the airports, which tends to increase flight times.  

The coefficients of MAXHHI and HHI are negative and statistically significant, at least at the 

10% level. The estimate of MAXHHI, that measures concentration at the airport level, corroborates 

the airport congestion internalization hypothesis, as in Mayer and Sinai (2003), Santos and Robin 

(2010) and Bendinelli et al. (2016). The estimate of HHI corroborates the results of Rupp et al. 

(2001), that find worse on time performance in more competitive routes. The delay variables are all 

statistically significant and have positive coefficients, as expected. If a high proportion of flights is 

delayed, flight times are expected to increase, on average.  

Regarding the PBN variables, the estimation results suggest statistically significant relationships 

with respect to mean flight times. The negative sign shows that PBN operations apparently led to a 

reduction of 1% - 2% in flight times, as expected by aviation stakeholders. PBN operations at both 

endpoint cities implies in an estimated reduction in flight time by approximately 1,9% on average, 

according to this model. PBN only at origin airports suggests a 1,2% flight time reduction in Column 

(3). However, when the aircraft mix controls are included in the model (Column 4), such negative 

effect decreases to 0,8%, which suggests that variations among aircraft performances have a 

considerable effect on average flight times. PBN at arrivals reduce flight times at a higher value, on 

average by 2,3%. This difference between the estimates of PBNO and PBND was expected since 

the pool for improvement is bigger for descents than for climbs. PBN procedures facilitate the 

employment of Continuous Descent and Climb Operations (CDOs and CCOs, respectively), 

eliminating or at least diminishing holding patterns, that were present in conventional approach 

procedures. 

Considering average flight times and the frequency of flights in each route and month we can 

obtain an estimate of the total number of flight hours in our sample period, that corresponds to 

approximately 19.9 million hours. From this total, about 2.5 million hours were flown on routes with 

PBN procedures at both endpoint cities, while 6.16 million hours were flown with PBN only at 

origin and other 6.15 million only at destination. The estimated number of saved flight hours based 

on the estimates of Columns 2 and 3 of Table 3 are displayed in Table 4.  
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Table 3 – Estimation Results 

  (1) (2) (3) (4) 

  lnFLTIME lnFLTIME lnFLTIME lnFLTIME 

     

DENSITY  0.0068***  0.0069***  0.0081***  0.0109*** 

LF -0.0276*** -0.0289*** -0.0277*** -0.0134*** 

FREQ -0.1107*** -0.1122*** -0.1105*** -0.1011*** 

ASIZE -0.0002*** -0.0002*** -0.0002*** -0.0008*** 

FUELP -0.0479*** -0.0477*** -0.0478*** -0.0519*** 

TURBOPROP  0.2218***  0.2223***  0.2228***   

NET_15_44 -0.0051* -0.0052* -0.0045* -0.0074*** 

NET_45_69  0.0001  0.0001  0.0044  0.0006 

NET_70  0.0120***  0.0123***  0.0203***  0.0176*** 

CON_10_20  0.0130***  0.0133***  0.0131***  0.0089*** 

CON_20_30  0.0176***  0.0178***  0.0167***  0.0156*** 

CON_30  0.0204***  0.0208***  0.0206***  0.0238*** 

SLOTPR -0.0147*** -0.0146*** -0.0184*** -0.0077*** 

HHI -0.0052* -0.0053* -0.0071** -0.0067*** 

MAXHHI -0.0095** -0.0095** -0.0108** -0.0048** 

MAXDEL  0.0895***       

DELO    0.0357***  0.0325***  0.0155*** 

DELD    0.0955***  0.0915***  0.0725*** 

PBN -0.0196*** -0.0191***     

PBNO     -0.0125*** -0.0084*** 

PBND     -0.0232*** -0.0226*** 

     

Fixed effects two-way two-way two-way two-way 

Aircraft mix control no no no yes 

     

Adjusted R2  0.9818  0.9819  0.9819  0.9848 

RMSE Statistic  0.0719  0.0717  0.0716  0.0657 

Nr Observations  116,528  116,528  116,528  116,528 

Results produced by the Least Square Dummy Variables Estimator (LSDV).  

P-value representations: ***p<0.01, ** p<0.05, * p<0.10. 

 

 
Table 4 – Estimated number of flight hours saved with PBN 

 Flight Hours 

(millions) 

Estimated Saved Hours 

(thousands) 

PBN 2.5 48 

PBND 6.15 139 

PBNO 6.16 51 

Total in Sample 19.9 238 
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5. Conclusions 

This paper employed an econometric model to investigate determinants of flight times in Brazilian 

domestic market over the period of 2000 to 2018 with special focus on the effects of the Performance 

Based Navigation (PBN) implementations by the air traffic management authority. Our model 

uncovered key factors explaining the increased flight times, such as growth in delays, airport size 

and passenger traffic. Our results show that more concentrated routes and airports experience faster 

flights, which is consistent with the findings of the previous literature. Additionally, flights to or 

from cities with over 70 destinations and at hubs tend to be longer, an effect probably associated 

with increased complexity of air traffic management of major airports.  

Our estimation results provide evidence that the PBN procedures reduced flight times by about 

1,9% on average when both endpoint cities are equipped with PBN. When PBN is available only at 

the origin airport, results suggest 0,8% of time reduction if the effects of the aircraft mix are 

controlled for. On routes with PBN at destination, flight times were apparently reduced by 1,2% on 

average. The empirical evidence obtained in this paper therefore suggests that about 238,000 flight 

hours were saved during the sample period due to PBN procedures. 
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