
 

 

 

 

 

 

 

 

 

WORKING PAPER SERIES 

 

Are on-time performance statistics worthless? 
An empirical study of the flight scheduling strategies 

of Brazilian airlines 

 

Ana Beatriz R. Eufrásio 
Rogéria A. G. Eller 

Alessandro V. M. Oliveira 
 

 

Institutional Repository 

 

 
December 2019 

Aeronautics Institute of Technology 
São José dos Campos, Brazil 

1977 
CENTER FOR 

AIRLINE ECONOMICS 



 

 

Are on-time performance statistics worthless? 

An empirical study of the flight scheduling strategies of Brazilian airlines 

Ana Beatriz R. Eufrásio 

Rogéria A. G. Eller 

Alessandro V. M. Oliveira 

 

Abstract 

Airlines may manage their on-time performance by lengthening schedules with engineered increases 

in planned flight times. In Brazil, we suspect that a recent upsurge in the proportion of early flight 

arrivals may be the outcome of strategic additions of flight buffers by carriers, aiming to improve 

on-time performance statistics. However, longer times may also be the outcome of changes in the 

operating conditions of flights, such as the cost indexes. We develop an econometric method of high 

dimensional sparse (HDS) regression to decompose the extra schedule block times into operational 

and strategic factors, after accounting for the uncertainty in the scheduling decision-making. We 

estimate the impact of extra times on flight delays, allowing for moderation effects of runway 

congestion, slots, and propagated delay. We test and confirm the hypothesis of existence and 

effectiveness of schedule padding practices. Airlines apparently set longer extra times on denser 

routes, possibly to minimize the reputational risk contagion. We find that a 2012 on-time disclosure 

rule may have produced the unintended consequence of inducing the padding behavior by carriers. 

In contrast, slot regulation may mitigate the formation of extra block times.  
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1. Introduction 

“Airlines are taking a little more conservative approach to ensure they’re going 

to arrive on time.” (...) “It’s part of their marketing campaigns, part of their 

affinity programs to develop consumer loyalty.” - Sean Cassidy (vice president of 

the US Air Line Pilots Association labor union and Alaska Airlines pilot).1 

 

Flight scheduling is one of the most important tools of airline network management, as it is a key 

driver of operating costs. However, carriers may have strong incentives to plan scheduled flight 

times not only based on cost conditions but also on the status of service quality competition in the 

market. Setting longer flights confers airlines with more flexibility to deal with unexpected delays 

and still accomplish the scheduled arrival times, a strategy labeled as “schedule padding” in the 

industry. By padding their schedules, airlines have often been blamed for artificially improving their 

on-time performance (OTP).2  

Scheduling longer travel times may be inevitable for an airline from the flight operations 

standpoint. Actually, the flight management systems on modern airliners optimally determine the 

cruise speed of a flight in line with the cost index parameter (CI), a ratio between time-dependent 

costs and fuel costs. Each flight cruise is typically assigned with a speed that is within the “maximum 

range cruise speed” - a low speed consistent with a null CI level - and the “maximum permissible 

cruise speed” - a high speed consistent with the maximum CI level.3 In the first case, the time-

dependent cost is low relative to the unit fuel cost, allowing for longer flight duration and less fuel 

consumption; in the second case, the time-dependent cost strongly dominates the fuel cost, leading 

to flights with shorter duration and higher fuel consumption. In this sense, the task of scheduling 

flight times is strictly dictated by the relative operating costs of the airline and as a result, not all 

extra times added to scheduled flight times constitute real strategic time buffers. 

The objective of this paper is to empirically decompose the extra times incorporated by carriers 

to their schedules into strategic and operational determinants. We also aim at assessing the efficiency 

of extra times in enhancing OTP by estimating their impacts on the odds of flight delays. We analyze 

the Brazilian airline industry from 2001 to 2018. In this period, the country has witnessed relevant 

variations on its OTP records. In 2008, the São Paulo/Guarulhos (GRU) airport, a key international 

gateway in the country, was considered one of the most delayed airports in the world.4 Ten years 

 

1 “Airlines pad flight schedules to boost on-time records”, USA Today, available at www.usatoday.com, Feb 14, 2013. 
2 See Yimga & Gorjidooz (2019). 
3 Young (2018), and Deo, Silvestre, & Morales (2020). 
4 ‘‘The World’s most-delayed airports”, Forbes, Jan, 14, 2008. 
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later, however, the situation has completely changed, with GRU now ranking number 10 among the 

top 20 major airports with respect to OTP.5 While the occurrence of delays in the Brazilian market 

has dropped from 27,5% in 2008 to 15,8% in 2018, the episodes of early arrivals have increased 

from 0,4% to 44,3% in the same period.6 

We inspect the market incentives of airlines to engage in strategic flight scheduling by means of 

an econometric of high dimensional sparse (HDS) regression that estimates the drivers of the extra 

scheduled block times in Brazil. We also investigate the impact of three regulatory reforms: the 2012 

on-time disclosure resolution - which made mandatory to airlines to publish their delays and 

cancellations statistics for each flight on their websites and other sales channel; the 2014 slots reform 

at major airports in the country; and finally, the introduction of a major ATM innovation - the 

implementation of Performance-Based Navigation (PBN) procedures in Brazilian airports since the 

late 2000s. 

This paper aims at contributing to the recent econometric literature on airline strategic scheduling 

- Skaltsas (2011), Forbes, Lederman, &Yuan (2018), Fan (2019), Yimga & Gorjidooz (2019), 

Brueckner, Czerny, & Gaggero (2019). In particular, we study the decoupling of scheduled block 

times from the “unimpeded” block times, i.e., the gate-to-gate travel times accomplished under ideal 

flight circumstances.7 We then test whether a lengthening in flight duration by carriers is motivated 

by a set of competition-related drivers that are ceteris paribus to the cost index-related factors. To 

the best of our knowledge, this is the first study that empirically distinguishes the strategic buffer 

time from the operational extra time of airlines. We therefore examine if carriers set longer 

scheduled block times purely as a schedule padding practice, by adding a strategic buffer to 

artificially improve OTP, or if such extra time is actually an unavoidable consequence of changes in 

operating conditions. 

This paper is organized as follows. Section 2 provides a discussion of the literature on airlines 

scheduling decisions and the determinants of flight on-time performance. Section 3 presents the 

empirical model. Section 4 presents the estimation results, which is followed by the conclusions. 

 

 

 

5 Source: Official Aviation Guide (OAG), Punctuality League 2019, Jan, 2019. 
6 Source: Active Scheduled Flight Report (VRA), National Civil Aviation Agency. 
7 Yimga & Gorjidooz (2019) and Fan (2019). 
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2. Airline scheduling and the duration of flights 

Although aircraft technology is more advanced than ever, flight duration has actually increased 

for several routes over the years (Fan, 2019). For example, certain non-stop flights from London 

Gatwick to JFK and from Heathrow to Bangkok in 2018 were lengthened by 20 minutes, when 

compared to their 2008 scheduled block times,8 while other flights from Heathrow to Newark were 

35 minutes longer.9 In parallel, and not coincidentally, airlines have reached notable high OTP 

records. In 2012, for the first time, there were more early arrivals than disrupted flights in the US, 

with 20% of the major airlines’ domestic flights arriving at least 15 minutes earlier.10 So far, a limited 

number of econometric studies have analyzed the determinants of variations in flight times. In what 

follows we present details of the key findings of the previous literature.  

2.1. Operational aspects of the setting of scheduled block times 

Although airlines aim at building reliable schedules, some characteristics, as weather and 

congestion, are not fully manageable. The predictability of flight times is key for the planning of 

schedules by airlines, as the more uncertain actual flight times are, the longer scheduled block times 

tend to be (Kang & Hansen, 2017). Adverse weather conditions are one of the main external factors 

that potentially affect delays and add important uncertainty to travel times. The scheduled block 

times can vary by season, on account of the prevailing winds, and even by time of day, because of 

possible congestions occurring during peak hours.11 Fan (2019) shows that, as airports and air traffic 

control are increasingly denser, there are more variabilities that can cause disruptions and cascade 

delays through other flights. Brueckner, Czerny, & Gaggero (2019) find that a higher variability of 

flight times, measured by the standard deviation of the actual flight times distribution, contributes 

to increase the additional time of flight schedules. 

A longer scheduled block time may be related to infrastructure constraints. Airports’ congestions 

and crowded airspace possibly contribute to airlines increase their actual block times, aiming at 

managing the risks associated with passengers’ connections and flight disruptions (Fan, 2019). The 

OTP of a flight may be damaged by the propagation of a small flight delay that occurred much earlier 

(Kafle & Zou, 2016). Adding extra times to the minimum necessary time of flight and of ground 

turnaround operations can incorporate unexpected delays and absorb their propagation (Kafle & 

 

8 The scheduled block time represents the difference between the gate arrival time at the destination airport and the 

gate departure time at the origin airport. 
9 “Schedule padding: Is this why air travel is getting slower?” Which, Aug, 27, 2018. 
10 “Airlines pad flight schedules to boost on-time records” USA Today, Feb, 14, 2013. 
11 See a discussion in Holloway (2008). 



  

 

4 

 

Zou, 2016; Brueckner, Czerny, & Gaggero, 2019). Kafle & Zou (2016) analyze how flight and 

ground buffers can be implemented to reduce newly formed and propagated delays. They find that 

flight buffers usually are smaller and vary less than ground buffer, with ground operations having a 

greater heterogeneity than flight operations.  

Mayer & Sinai (2003) and Forbes, Lederman, & Yuan (2018) note that setting longer scheduled 

block times imply in higher crew cost and in less efficient use of aircraft, by assigning less missions 

for the existing fleet. In addition, travel duration also impacts aircraft fuel efficiency. Fuel expenses 

are one of the main cost components of carries, and their importance increases with higher fuel price 

(Şafak, Atamtürk, & Aktürk, 2019). In situations of a rise in fuel prices, carries may decide to fly at 

slower cruising speeds to reduce fuel consumption (Fan, 2019). Even though fuel consumption 

reduces with slower flights, time-dependent costs, as crew costs and maintenance, increase with 

travel time (Edwards, Dixon-Hardy, & Wadud, 2016). There is an optimal cruise speed that 

correspond to the lowest flight operating costs, considering fuel, time-dependent and fixed costs, 

determined by the cost index of the flight. The cost index represents the ratio between the time-

dependent costs and fuel cost per flight, being unique to the aircraft and to the airline (Young, 2018). 

The lower the cost index, the lower the cruise speed and also the fuel burnt. If a longer block time 

is a consequence of flying at slower speeds to reduce fuel consumption, the operating costs are not 

necessarily lower, as longer flights increase time-dependent costs. Higher fuel prices incentive 

airlines to improve their fuel efficiency (Zou et al., 2014), and may affect travel time. However, Fan 

(2019) note an almost imperceptible impact of the fuel price on flight block time. 

2.2. Scheduled block times and strategic time buffers 

Regarding the passenger point of view, flights with shorter duration may be preferred (Kang & 

Hansen, 2017; Prince & Simon, 2009). In fact, shorter flights can be seen as a competitive advantage, 

especially in routes with intense competition (Skaltsas, 2011). But adding an extra scheduled time - 

a “buffer” to accommodate possible unexpected events - may have a positive impact on airline’s 

service quality as it generates better on-time performance (OTP) statistics. Performance and 

reputation are important to improve passenger perception about airline service quality. Although 

such lengthening may attract more customers due to the guarantee of less delay (Kang & Hansen, 

2017; Prince & Simon, 2009; Skaltsas, 2011), improving one dimension of airlines service quality 

may deteriorate others. Adding a planned extra time will increase the reliability of arrival times, but 

will also increase the total time of travel, not being straightforward evident if service quality will 

improve (Forbes, Lederman, & Yuan, 2018). Yimga & Gorjidooz (2019) associate the schedule 

padding practices with negative effects to the consumer welfare. They find that, although this 
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practice generates a better OTP, its demand-increasing effect is offset by the aversion of passengers 

for longer scheduled flight times.  

Kang & Hansen (2017) find that in a highly competitive route, airlines tend to increase their 

scheduled block times. Prince & Simon (2009) and Fan (2019) find evidence that carries reduce 

their scheduled travel time in less competitive markets, being more vulnerable to delays. Forbes, 

Lederman, & Wither (2019) discuss that as airlines engage in price and quality competition, if one 

carrier is encouraged to improve its reported OTP statistics, this would possible induce its 

competitors to adopt the same strategy. Miranda & Oliveira (2018) find that schedule padding allows 

reducing the likelihood of flight disruptions without provoking cost-related price increases. 

2.3. Impacts of changes in policies and regulations on flight scheduling 

Changes in policies and regulation may provide incentives for airlines to adjust their scheduled 

block times. Quality disclosure programs set rules to make the OTP statistics publicly available. For 

example, the punctuality statistics of US large airlines have been published since 1995, following 

the On-Time Disclosure Rule (OTDR), set by the US Department of Transportation in 1987. 

Shumsky (1993) observed that the scheduled block times of some domestic routes of the US market 

had been lengthened during the years after the OTDR implementation. Forbes, Lederman, & Wither 

(2019) find evidence that airlines lengthened their scheduled times as a response to the OTDR. 

Air traffic management (ATM) innovations, and the resulting regulations, constitute other sources 

of incentives for airline scheduling adjustments. The Single European Sky ATM Research (SESAR) 

in Europe, and the Next Generation Air Transportation System (NextGen) in the US are examples 

of initiatives that aim at implementing a more efficient navigation system. They aim at implementing 

a paradigm shift from ground-based to a fully satellite-based ATM system, with Performance Based 

Navigation (PBN) being one of the tools for targeting a more precise information about the position 

of airplanes in the air space. Diana (2017) finds evidence that the NextGen programs and the airspace 

redesign in the US have possibly improved OTP since their implementation. 

Airline on-time management is also influenced by the enforcement of airport slot regimes. Santos 

& Robin (2010) analyze the possible causes of delays in European airports, including an 

investigation of the impacts of slot coordination. They find evidence that delays are higher at fully 

coordinated airports, lower at schedules-facilitated airports, and the lowest at slot constrained ones. 
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3. Research design 

3.1. Application 

We consider the domestic Brazilian airline industry from 2001 to 2018 to develop empirical 

models of extra scheduled block time and flight delays. Deregulation and low-cost carrier entry have 

produced notable intensification of price competition in this industry in the period. As a result, the 

market has expanded significantly, from 29.9 million of domestic passengers transported in 2001, 

to 93.7 million in 2018.12 The rapid growth put pressure on the existing airport and air traffic 

management (ATM) infrastructure, with higher congestion and many episodes of cascading delays 

in the late 2000s. As a way to address the problems associated with congestion, the authorities have 

engaged in a sequence of important regulatory reforms to mitigate flight disruptions in the country. 

First, new management procedures and regulations of the air space, with the enforcement of 

Performance Based Navigation (PBN), have been gradually introduced in some Brazilian airports 

since 2010.13 PBN allows a satellite-based air navigation with more accurate three-dimensional 

flight paths and, as a result, a more optimized airspace with more direct routes. Some of the expected 

operational gains of PBN are the reduction of flight times and flight delays.14 

A second governmental measure to alleviate flight disruptions in the country was the launch of a 

new on-time disclosure rule in 2012.15 The main objectives of that regulation are to allow the 

disclosure of the characteristics of the services provided by the airlines and to enhance the 

transparency in the consumer relations in the industry.  The new regulation then enforced the 

obligation that airlines have to make their delay and cancellations statistics publicly available. More 

specifically, carriers must disclose the percentages of delays and cancellations of each flight not 

only on the airlines’ website, but in all their ticket distribution channels - either direct or third party. 

The disclosed figures must be the same calculated by the regulator, namely the National Civil 

Aviation Agency (ANAC), for each airline-flight stage-period combination.16 The information must 

be visible since the beginning of sales process, i.e. as soon as the passenger informs the desired flight 

itineraries and dates. 

 

12 Source: National Civil Aviation Agency and Department of Civil Aviation’s Air Transport Yearbooks (2001, 2018) 
13 According to the Aeronautical Information Circulars (AICs) released by the Department of Air Traffic Control 

from Brazil (DECEA). 
14 “Fact Sheet: NextGen and Performance-Based Navigation”, Federal Aviation Administration, 2014.  Available at: 

www.faa.gov. 
15 ANAC Resolution nº 218, Feb 28, 2012. 
16 In the face-to-face and telephone offer of the service, the information shall be presented to the consumer upon 

request. 
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The third regulatory reform was implemented during the country’s arrangements to host the 2014 

FIFA World Cup and the 2016 Summer Olympics, and was concerned with airport slots.17 In the 

country, ANAC is the authority in charge to regulate the operation of slots at coordinated airports. 

The first airport declared as coordinated in the country was São Paulo/Congonhas Airport (CGH), 

in 1996. The 2014 regulation incorporated the concept of seasons from IATA’s Worldwide Slot 

Management Standards. A number of major airports in the country were declared coordinated 

besides CGH, such as São Paulo/Guarulhos (GRU), Rio de Janeiro/Santos Dumont (SDU) and Belo 

Horizonte/Pampulha (PLU), among others. The new rules stipulate fines to the carrier that 

intentionally keeps allocated slot that it does not intend to operate, among other fines and penalties. 

The regulation utilizes the concept of airport “incumbent” and “entrant” airlines to define the target 

participation of each of these groups in the total amount of slots - at least 50% for entrants. Minimum 

slot usage percentages are enforced in a “use-it-or-lose-it” rule with targeted flight regularity and 

punctuality of at least 80% and 75%, respectively - 90% and 80% at CGH -, and 15 minutes of 

tolerated flight time deviation for computation of flight delays. In the rule, the agency stipulated that 

the concepts of “entrant” could be flexibly redefined on occasions when the expected benefit from 

a more intense use of airport infrastructure could be technically proven. The new rule aimed to 

reduce the entry barriers to competition on slot-constrained airports.  

Table 1 displays the recent evolution of early and delayed flight arrivals in the country. In that 

table, it is possible to see a significant increase in early flight arrivals, concomitant with a decrease 

in delayed flights, especially since 2015 - when the proportion of early arrivals exceeds the 

proportion of delayed flights for the first time. We suspect that part of the explanation for such 

dynamics may be a consequence of on-time performance improvement accomplished by strategic 

scheduling practices - a hypothesis that we will formally test in the empirical modelling.  

 

 

 

 

 

 

 

17 ANAC Resolution nº 338, Jul 22, 2014. 
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Table 1 - Proportion of early and delayed flight arrivals in Brazil18 

year Early Arrivals Delayed Arrivals 

2007 0,3% 38,8% 

2008 0,4% 27,5% 

2009 0,4% 20,0% 

2010 1,3% 24,0% 

2011 2,6% 24,7% 

2012 4,7% 21,7% 

2013 5,6% 16,2% 

2014 5,2% 16,4% 

2015 13,9% 13,0% 

2016 20,4% 12,9% 

2017 19,4% 15,2% 

2018 44,3% 15,8% 

Notes: (i) Source: ANAC’s VRA Report - domestic flights, with own 

calculations; (ii) A flight is computed as delayed if it arrives 15 or more minutes 

later than the scheduled arrival time; (iii) An arrival is set as early if the flight’s 

arrival time is earlier than the scheduled arrival time. 

 Figure 1 presents the evolution of the mean actual and scheduled flight times of on some of the 

densest routes in Brazil.19 In line with Table 1, we observe that the actual flight times have decreased 

in parallel with an increase in the scheduled flight times. 

 

Figure 1 - Evolution of mean actual scheduled flight times of a selection of top-densest routes in Brazil  

Source: National Civil Aviation Agency – VRA Report, with own calculations 

 

18 We consider a flight delayed if it arrives 15 or more minutes later than the scheduled. Also, we consider an early 

arrival when the real arrival time is earlier than the scheduled time. 
19 The selected routes are 6 among the top 12 densest city-pairs of Brazilian domestic market in 2018. 
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3.2. Data 

Our dataset consists of a panel of 322 routes of the domestic airline industry in Brazil, with 

monthly observations between January 2001 to December 2018.20 We consider only passenger 

flights and define route as a directional city-pair, grouping multiple airports belonging to the same 

catchment area. We restrict our analysis to routes that involve two state capitals. Most data utilized 

are publicly available from the National Civil Aviation Agency (ANAC) in an online database. 

ANAC provides information on all the scheduled flights on the Active Scheduled Flight Report 

(VRA). We also utilized ANAC’s Air Transportation Market Statistics Database, available online 

as well, which contain flights operational data aggregate by month of each city-pair/airline. Jet fuel 

price information is obtained from the National Agency for Petroleum, Natural Gas and Biofuels 

(ANP)’s website. 

3.3. Strategic and operational components of the extra scheduled block time 

We now clarify the terminology utilized in our modelling of strategic flight buffer time formation. 

Consider that the actual block time (ACTBT) of a flight depends on its operating conditions, on the 

status of the infrastructure of the airports, and on the intensity of competition of the route, as 

displayed by Equation (1). 

ACTBT = O(DIST, AIRC, CI, WEA) + I(CONG) + C(OTP), (1) 

where O(.) are the flight operations-related drivers of block time, namely flight distance (DIST), the 

assigned aircraft, including its technology, aerodynamics, engine and weight (AIRC), the cruise 

speed chosen considering the cost index of the operation (CI) and the weather conditions, including 

the intensity and direction of winds (WEA). I(.) are the infrastructure-related drivers, namely the 

scarcity stemming from airports and ATM, which provokes their congestion effects (CONG) on 

flight duration. C(.) are the market incentives that impact flight times, namely the satisfaction levels 

and loyalty of passengers, the carrier’s reputational risk and its goals related to on-time performance 

(OTP), assuming service-quality competition in the market. Note that we allow I(.) to be decoupled 

from C(.), and thus assume that although the shortage of terminal, runway and air space 

infrastructure may increase block times, we do not regard them as sources of strategic behavior by 

carriers to control their OTP.  

 

20 The number of sample periods is 212. Due to the special procedures for the 2014 World Cup, some months of that 

year were not available in the data sample.  
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We conceive the scheduled block time (SCHBT) as a function of the expected actual block time 

(ACTBTe) on the occasion in which the airline takes its flight scheduling decisions. The superscript 

e means “expected at the time of flight scheduling”. We model SCHBT as: 

SCHBT = ACTBTe + , (2) 

where  is a random error term associated with the uncertainty over the flight at the scheduling 

decision making. By substituting (1) into (2) and considering the airline’s expectations with respect 

to the operating conditions, congestion and its OTP goals we then have: 

SCHBT = O(DIST, AIRC, CIe, WEAe) + I(CONGe) + C(OTPe) + , (3) 

in which we assume that the flight distance and the assigned aircraft are known by the airline at the 

scheduling time. The other factors, namely CI, WEA, CONG and OTP, are subject to the formation 

of expectations by the carrier. Let us consider the possibility that the formation of expectations about 

the competition in the market creates an incentive for the airline to insert a flight time buffer when 

planning its schedule. Such padding is exclusively designed to take better control of the airline’s 

OTP. We therefore substitute C(.) by a buffer function BUFF(.) = C(OTPe) + , where  is an error 

term associated with the carrier’s misinterpretations of the future status of competition: 

SCHBT = O(DIST, AIRC, CIe, WEAe) + I(CONGe) + BUFF(OTPe) + u, (4) 

where u =  +  is a component error term. Now consider that the flight operating conditions and 

the infrastructure-related determinants of the block time O(.) and I(.) may be redefined and 

decomposed into the following parts: an unimpeded block time function UNIBT(.),21
 and an optimal 

addition to that unimpeded time, OPTADD(.). We then have: 

SCHBT = UNIBT(DIST, AIRC, CImax)  

+ OPTADD(CIe, WEAe, CONGe)  

+ BUFF(OTPe) + u, 

(5) 

where CImax is the maximum cost index employed on route k at time t. In the unimpeded block time 

(minimum feasible block time), the speed is set close to the maximum permissible cruise speed 

associated with the maximum CI level, i.e., a situation in which the fuel costs on that route are 

 

21 See Zou & Hansen (2012). Fan (2019) utilizes the term “uncongested baseline block time”. 
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minimum related to the time-dependent costs. In this hypothetical case, the carrier minimizes the 

flight time, but at the cost of consuming more fuel (Young, 2018). 

 The optimal addition of time, OPTADD(.), represents the adjustment made to the unimpeded 

time as an anticipation of a lower cost index, and of possible adversities that create non-ideal 

operating conditions. For example, if the departure or the landing of a flight is scheduled for a busy 

hour at an airport, in which multiple flights operate, airlines may decide to add extra minutes to their 

schedules to guarantee the reliability of their operations. In contrast, the BUFF(.) part of the SCHBT 

equation represents the schedule padding practice, i.e., the buffer time added exclusively as a 

strategy to artificially improve OTP levels. Note that we consider that any flight may have an extra 

time added to the unimpeded block time that is “optimum” with respect to typical flight operations 

- the OPTADD(.) portion in (5). In this sense, OPTADD(.) is a necessary addition to minimize 

operating costs, given the non-ideal operating conditions that are anticipated by carriers. Without 

such optimal addition, the carrier would probably incur in higher than optimal cruise speed, or 

suboptimal climb or descent procedures. In other words, whereas BUFF(.) is an extra time mainly 

related to strategic factors based on market pressures, OPTADD(.) is a necessary extra time, 

exclusively associated with the pursuit of efficient operations by the carrier in the very common cost 

index situation of fuel costs not being negligible with respect to time-related costs. 

Our empirical specification requires a proxy for UNIBT(.) and then moving it to the left-hand side 

of the equation. We then finally reach: 

EXTBT = OPTADD(CIe, WEAe, CONGe) + BUFF(OTPe) + u, (6) 

where EXTBT is the extra scheduled block time inserted by the airlines to their unimpeded flight 

time, i.e. EXTBT = SCHBT - UNIBT*, with UNIBT* being a proxy for UNIBT(DIST, AIRC, 

CImax). Our empirical model considers EXTBT as the regressand, and a set of shifters as explanatory 

variables associated with the OPTADD(.) and BUFF(.) functions. Note that the actual flight distance 

component of Equation (5), i. e. the DIST factor - is not needed in our empirical model, as UNIBT* 

eventually becomes part of the regressand in (6). 

3.4. Empirical model 

Equation (7) presents the empirical counterpart of the extra scheduled block time model of (6), in 

our application to the Brazilian airline industry. Equation (8) presents our flight delays model. 
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EXTBTk,t  = β1 FUELPk,t-h + β2 DENSk,t-h + β3 FREQk,t-h + β4 ASIZEk,t-h 

+ β5 RWYCONGk,t-h + β6 SLOTPRk,t-h + β7 HHIk,t-h + β8 Tt 

+ β9 Tt × QUALREGk,t + β10 Tt × SLOTREGk,t + β11 Tt × ATMREGk,t 

+ β12 CASCDELk,t-h + uk,t, 

 

(7) 

 

ODDSDELk,t  = 1 DENSk,t + 2 FREQk,t + 3 ASIZEk,t + 4 RWYCONGk,t 

+ 5 SLOTPRk,t + 6 HHIk,t + 7 Tt + 8 Tt × QUALREGk,t 

+ 9 Tt × SLOTREGk,t + 10 Tt × ATMREGk,t + 11 CASCDELk,t-h 

+ 12 EXTBTk,t  +  13 EXTBTk,t × RWYCONGk,t 

+  14 EXTBTk,t × SLOTPRk,t + 15 EXTBTk,t × CASCDELk,t + vk,t, 

 

(8) 

where k denotes the route (k = 1, …., 322 directional city-pairs), t the periods (t = 1, …, 212 months) 

and h is a time lag to denote the horizon for flight scheduling. Below we discuss the components of 

(7) and (8). On the sequence, Table 2 presents the descriptive statistics and the sources of each of 

the main variables.  

• EXTBTk,t is the route mean extra time added to flights in the sample period, in minutes. In other 

words, we compute EXTBTk,t = SCHBTk,t - UNIBT*k,t - where UNIBT*k,t is a proxy for the 

unimpeded block time for each flight -, and then extract the route mean for each time period. 

With respect to the configuration of UNIBT*k,t, we follow the approach of the literature - Yimga 

& Gorjidooz (2019), and Fan (2019). For each combination of route, airline, month and aircraft, 

we set the unimpeded block time as a low percentile of the actual flight times distribution.22 In 

the ODDSDEL equation, this variable is included as a regressor, aiming at allowing a formal test 

of the effectiveness of the extra times on the management of flight delays by carriers; 

• FUELPk,t is a proxy for the jet A1 fuel price in deflated local currency. We add to that metric a 

proxy for the Brazilian state tax burden on the jet fuel burned on domestic flights, with rates 

ranging from 3% to 25% depending on the state and on the period in the sample. An increase in 

the price of jet fuel may induce airlines to adjust their cost index and consequently their scheduled 

4flight time, to achieve fuel consumption reductions targeting energy efficiency. It is computed 

as the minimum average jet fuel price observed at the endpoint cities of a route; 

• DENSk,t is the total number of route passengers (in ten thousand) This variable is intended to 

capture the adjustments made to the scheduled travel times according to the route density, as 

 

22 We utilize the the 5th percentile but also experiment with the 10th percentile in a robustness check. 



  

 

13 

 

airlines are possibly more concerned with passenger satisfaction on the densest routes. The 

motivation for that behavior may be related to the reputational risk associated with poor OTP, 

which can be amplified in these markets and be quickly spread to passengers of other markets. 

Beyond this strategic motivation, denser routes usually have more complex flight trajectories 

stemming from specific ATM procedures, and also have more connecting passengers making 

airport terminal operations more complicated. These factors may lead airlines to schedule more 

extra block time; 

• FREQk,t is the total number of nonstop flights (in hundreds). This variable aims at capturing the 

fact that on city-pairs with high flight frequency, carriers possibly have to accomplish better 

operational efficiency with lower aircraft turnaround times. As a result, there is fewer space for 

flight time lengthening. In contrast, routes with higher flight frequency are more vulnerable to 

flight delays; 

• ASIZEk,t is the average number of seats of aircrafts on the route. Ceteris paribus, larger jet 

airliners may present higher cruise speed than smaller regional airliners. Additionally, passenger 

and baggage handling associated with larger aircraft may be more complex and costly. Finally, 

although total flight costs are usually higher in large airplanes, economies of density may emerge 

in such way to decrease the unit costs of the non-fuel-related inputs; as a consequence, the cost 

index may be an indirect function of the seating capacity of the airliner;  

• RWYCONGk,t is the percentage of flights operated at congested hours on the route. An hour is 

computed as “congested” when any of the endpoint airports operates more flights that its declared 

runway capacity, considering arrivals and departures. This variable is expected to control how 

airlines set their extra scheduled time according to past airport congestion; 

• SLOTPRk,t is the percentage of flights operated at slot-constrained airports. It allows to 

investigate the effect of a slot regime on flight scheduling, as airlines may set shorter flight times 

when operating at coordinated airports; 

• HHIk,t is the Herfindahl-Hirschman index of city-pair concentration (multiplied by 100), based 

on revenue passengers. It is related to the variations in the intensity airline rivalry and its effects 

on the incentives for scheduling aiming at strategic controlling the on-time performance (OTP) 

levels by carriers. As it is clearly associated to the market conduct of airlines, we believe that a 

formal hypothesis tests of the nullity of the coefficient of this variable may allow us to empirically 

assess the existence of schedule padding practices in the market; 

• Tt is a time trend variable, T = 1, 2, ..., TP, where TP is the total number of sample time periods;  
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• Tt × QUALREGt is an interaction variable to capture a possible structural break in the trend from 

the launch of the airline on-time disclosure regulation in Brazil. QUALREGt is a dummy variable, 

assigned with 1 from May 2012, since when new regulation has been in force. As the regulation 

establishes that all carriers must report their flight delays and cancelations statistics to consumers 

at the moment of sales, the rule may have strengthened the incentives for padding their schedules 

targeting better OTP; 

• Tt × SLOTREGk,t is an interaction term to capture a possible break in the trend after the regulatory 

reform of airports slots of 2014, in which stricter “use-it-or-lose-it” slot rules, at a broader set of 

major airports, were introduced. SLOTREGk,t is a dummy variable set with 1 after July 2014; 

• Tt × ATMREGk,t is an interaction variable to capture the effect of the introduction of new air 

navigation procedures and regulations of Performance Based Navigation operations from the air 

traffic management (ATM) authorities in a set of airports since 2010. ATMREGk,t is a dummy 

variable that indicates if a given city-pair is under PBN operations at the endpoint cities; 

• CASCDELk,t is a proxy for cascading delays that may affect all the flights of a given route. It is 

equal to the maximum proportion of delayed flights between the origin and the destination 

airports of the route. A flight is considered delayed if the difference between the actual and the 

scheduled arrival time is, at least, of 15 minutes. This variable is aimed to capture the impact of 

overall delays on the expectations of the schedule planners, which may add extra time to routes 

that historically involve more delayed airports. In the ODDSDEL equation this variable helps in 

the controlling of the time-varying unobservables at the level of the terminal control area, e.g. a 

propagation of flight delay following an adverse weather condition; 

• ODDSDELk,t is the log odds of flight delays, i.e., ODDSDELk,t = ln [DELk,t/(1-DELk,t)], where 

the DELk,t is the proportion of scheduled non-stop flights reported with arrival delays, divided by 

the total scheduled non-stop flights on the route.23 Again, we utilize a period of 15 or more 

minutes do identify if a flight is delayed. 

• EXTBTk,t × RWYCONGk,t is an interaction variable that allows us to test the moderation effects 

of runway congestion on the possible relationship between EXTBT and ODDSDEL in Equation 

(8). We therefore aim to inspect if the impact of the inclusion of extra scheduled block time on 

flight delays, is stronger or weaker depending on the intensity of runway congestion on the route; 

 

23 To simplify the visualization of the scale of the estimated coefficients, we multiply this variable by 10. 
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this and the next two variables aim to extend the model of Miranda & Oliveira (2018), which 

does not allow for moderation effects of EXTBT in their flight delays model. 

• EXTBTk,t × SLOTPRk,t is an interaction variable to inspect existence of possible moderation 

effects of the slots regime on the relationship between ODDSDEL and EXTBT; here we aim to 

investigate if the effectiveness of the extra block times in affecting the odds of flight delays is 

altered on routes of slot-constrained airports; 

• EXTBTk,t × CASCDELk,t is an interaction variable to inspect the existence of moderation effects 

of cascading delays on the relationship between ODDSDEL and EXTBT; this variable aims to 

analyze if the effect of the extra block times on flight delays is weaker or stronger with the 

occurrence of propagated delays at the airport level; 

• u and v are additive functions of the composite error terms;24 and the β’s and the ’s are the 

parameters to be estimated. 

Table 2 – Descriptive statistics of the model variables 

Variable Description Metric Mean Std Dev Min Max 

EXTBTk,t Extra scheduled block time (i) minutes 14.255 14.989 0 220 

FUELPk,t fuel price (v), (viii) BRL deflated 2.482 0.573 1.168 4.187 

DENSk,t passengers (ii) count, 10,000s 2.090 3.676 0.001 44.059 

FREQk,t flight frequencies (i), (ii) count, 100s 2.215 3.799 0.010 41.120 

ASIZEk,t nr of seats (i), (ii) count 141.844 33.461 9.643 207.455 

RWYCONGk,t runway congestion (iv) % 12.679 19.709 0 100 

SLOTPRk,t slot flights proportion (i), (iii) % 14.008 27.053 0 100 

HHIk,t market concentration (ii) index x 100 54.800 22.431 20.817 100 

Tt time trend discrete sequence 115.669 60.320 1 212 

QUALREGt quality regulatory reform (iii), (viii) dummy 0.417 0.493 0 1 

SLOTREGk,t slot regulatory reform (iii), (viii) dummy 0.104 0.305 0 1 

ATMREGk,t ATM regulatory reform (iii), (viii) dummy 0.044 0.206 0 1 

CASCDELk,t propagated delays (i) % 19.016 8.296 0 79.339 

DELk,t proportion of delayed flights (i) fraction 0.183 0.139 0 1 

Sources: National Civil Aviation Agency (ANAC)’s Active Scheduled Flight Report - VRA (i) and Air Transportation Market Statistics 

Database (ii); governmental regulations available online (iii); “Study of the Air Transport Sector in Brazil” - Brazilian Development 

Bank, 2010 (iv); National Agency for Petroleum, Natural Gas and Biofuels - ANP (v); Brazilian Institute of Geography and Statistics 

- IBGE (vi), Central Bank of Brazil (vii) digital media press websites (viii). All figures computed with own calculations. 

 

 

 

24 See further discussion below. 
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3.5. Estimation strategy 

Our empirical framework requires the specification of the unobserved component related to the 

addition of the extra block time (EXTBT) by carriers, namely the error term u of Equation (6). We 

have already defined u =  + , with u therefore being a sum of random terms associated with the 

uncertainties when taking scheduling decisions with respect to future flight operations (), and with 

respect to quality-service competition in the market (). To account for such factors, our econometric 

approach treats u as a component error term related to route-specific idiosyncrasies and a set of time-

varying controls. Using indices k (route) and t (time), we then define: 

uk,t = k,t + k,t  

= (ROUTEk, UNCk,t, RWYCONGk,t × UNCk,t, 

       DIRo
k,s, DIRd

k,s, AIRLi
k,t, AIRCj

k,t) + k,t, 

(9) 

where: 

• ROUTEk is the fixed effect of route k, designed to control for the route-specific operating and 

time invariant market idiosyncrasies not observed by the econometrician.  

• UNCk,t is a proxy for the level of uncertainty on the scheduling decision-making of carriers. It 

accounts for both the operational and strategic uncertainty. It is calculated as the coefficient of 

variation - i.e. the ratio of the standard deviation to the mean - of the actual block time distribution 

of route k and time t. Ceteris paribus, airlines may need to add more extra time to flights on routes 

associated with more uncertain times; 

• RWYCONGk,t × UNCk,t is an interaction variable to capture the moderating effects of airport 

runway congestion (RWYCONG) on the relationship between uncertainty and the unobserved 

error; 

• DIRo
k,s and DIRd

k,s are a set of dummy variables that account for the unobserved effects 

associated with the direction (DIR), the region of the endpoint city (origin or destination, namely 

o and d), and the season (s), on route k. With such terms we aim at controlling the impact of 

weather and prevailing winds on flight times, which are likely to be region- and season- specific. 

Including a combination of route direction-endpoint airports regions-seasons controls is essential 

when analyzing scheduled and actual flight times, especially to account for the potential effect of 

prevailing winds, because airlines can take advantage of the tailwinds to reduce their flight times 

(Irvine, Shine and Stringer, 2016). We believe that our proposed framework may be also utilized 

in different contexts, being especially useful in case of strong jet streams - a phenomenon that is 
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very important in some regions of the globe but typically neglected in econometric airline studies. 

In Brazil, jet streams typically occur in the South region. The dummies are associated to the origin 

and destination regions of a city-pair, considering the five Brazilian geographic regions (North, 

Northeast, Center-West, Southeast and South). We interact these endpoint regions dummies with 

other dummies that relate each directional-route with the cardinal and intercardinal directions of 

the 8-point compass rose, using the azimuth angle. We therefore associate the orientation of each 

flight with the geographic locations of its origin and destination. Finally, we interact these 

combinations with a set of dummy variables representing the seasons (summer, winter, fall and 

spring). As an illustration, a São Paulo - Rio de Janeiro flight has both endpoint cities located in 

the Southeast of Brazil, and a predominant orientation to the East; we therefore have a dummy 

of Southeast (origin)/East (route direction) and a dummy of Southeast (destination)/East (route 

direction), for each season, and thus totaling eight dummies for each directional route.25 

• AIRLi
k,t is a set of dummy variables that control for the presence of airline i on route k at time t. 

With these dummy variables, we take into consideration the impacts of carrier/time-specific 

scheduling strategies on the overall flight operations on the route. 

• AIRCj
k,t is a set of continuous variables that measure the route share of flights of aircraft model j 

on route k at time t. With these proportions, we aim at accounting for the possible (unobserved) 

effects of changes in the aircraft mix and technology evolution on the flight operations of the 

route. 

• (.) is an additive function, and k,t is the random error. 

Another important setting of the EXTBT model in Equation (7) is related to the setup of the 

scheduling decision-making horizon. Considering that airlines schedules are designed some months 

in advance to actual flight operations, and thus utilize a three months lag to examine the impact of 

past realizations of key variables on the scheduling decisions of carriers - i. e. we set h = 3. We also 

examine the robustness of the results to changes in this setting.26 

We perform some diagnosis tests of the the residuals, namely, the Pagan-Hall, White/Koenker 

and Breusch-Pagan/Godfrey/Cook-Weisberg heteroscedasticity tests, and the Cumby-Huizinga test 

of autocorrelation. In the tests, we confirm the presence of both problems. We employ the procedure 

 

25 As many routes share the same origin and destination regions, the total number of dummies inserted in the 

specification is much less than the number of routes times the eight compass points utilized. We actually computed 288 

regions/directions/seasons dummies. 
26 See a discussion in 4.2. 
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of Newey-West to adjust the standard error estimates. Additionally, we examine the problem of 

multicollinearity in the estimation. We calculate mean and maximum VIF statistics of, respectively, 

4.69 and 17.49 (EXTBT model), and of 5.27 and 17.53 (ODDSDEL model) in our preferred 

specifications.27 These results reveal relevant multicollinearity issues indicating that we should 

cautiously interpret the results of the non-significant variables in our empirical models. 

  With respect to the ODDSDEL model - Equation (8) -, we utilize a similar specification of the 

error term of Equation (7) discussed above.28 However, motivated by the previous literature - 

Greenfield (2014), Bendinelli, Bettini, & Oliveira (2016) -, we assume that the unobserved 

components of the flight delays on city-pair market k at time t are correlated with the status of 

competition in that market. As a result, we must treat the market concentration level - the HHI 

variable - as endogenous in the ODDSDEL equation. We then employ the Two-Step Feasible 

Efficient Generalized Method of Moments (2SGMM) with standard errors robust to arbitrary 

heteroscedasticity and autocorrelation. 

Our identification strategy employs demand shifters associated with the size of the air travel 

market as instrumental variables. In particular, we utilize key socioeconomic metrics such as the 

gross domestic product (GDP), the population size, the GDP per capita, the Gini index of income 

inequality, and the number of active bank agencies, all extracted at the endpoint cities level.29 For 

all these demand shifters, we also utilize the maximum, the minimum, the simple and the geometric 

means between the origin and the destination of a route.  The data sources are the Brazilian Institute 

of Geography and Statistics (IBGE) and the Brazilian Central Bank. Other instrumental variables 

utilized for identification of the ODDSDEL equation is a set of lagged regressors of the EXTBT 

equation - namely, RWYCONG, SLOTPR and FUELP.  Finally, we utilize Hausman-type 

instrumental variables, considering concentration levels of other routes to instrument the 

concentration level of a given route.  

Apart from the fixed effects related to the 322 routes, our approach has in principle to deal with 

the estimation of additional 364 parameters of control variables (288 from DIRo
k,s and DIRd

k,s, 37 

from AIRLi
k,t, and 39 from AIRCj

k,t controls), besides the set of 61 instrumental variables. We utilize 

the econometric method of high dimensional sparse (HDS) regression models of Belloni et al (2012), 

Belloni, Chernozhukov, & Hansen (2014a,b), and Chernozhukov, Hansen, & Spindler (2015). The 

HDS approach is flexible in allowing a large set of regressors and/or instrumental variables under 

 

27 To be more conservative, we do not include fixed effects and controls in the regressions for these VIF extractions. 
28 The only difference is that in the ODDSDEL model we do not include the terms related to scheduling uncertainty. 
29 Some of these metrics have yearly periodicity and therefore required interpolation to produce monthly series. 
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the assumption that the model is sparse - i.e. only a smaller subset of the initial 

regressors/instruments are important for capturing the main features of the regression in the data 

generation process. The approach utilizes the Least Absolute Shrinkage and Selection Operator 

(LASSO) of Tibshirani (1996). We apply the Instrumental Variables Post-Double Selection (PDS) 

estimation, which has a final step that estimates a traditional (non-LASSO) regression utilizing the 

controls and instruments selected in the LASSO estimation step. In our case, the final step of the 

PDS estimation of EXTBT and ODDSDEL utilized the fixed effects implemented with, respectively, 

the Ordinary Least Squares (OLS) estimator, and the 2SGMM estimator. 

4. Estimation results 

Tables 3 and 4 present the results of our empirical models of extra scheduled block time (EXTBT) 

and arrival flight delays (ODDSDEL) in Brazil. To simplify the exposition, we omit indexes k and 

t. In both tables, the respective Column (4) contains our preferred model; Columns (1) to (3) present 

a set of subspecified versions of the main model, in which we drop some key variables; and finally, 

Columns (5) to (8) display the results of some robustness checks. In both tables, it is possible to 

observe that most results are in line with our ex-ante expectations regarding signs and statistical 

significance of the estimated coefficients. Additionally, and regarding the motivations airlines have 

when planning their flight schedules, the results of Table 3 suggest that block time lengthening is 

clearly a result of a combination of both operational and strategic behaviors in the market. 

Furthermore, the results of Table 4 suggest that adding extra times to flights is effective in reducing 

the chances of delays.  

 Let us focus on the main results of Table 3 first - the EXTBT model. Considering the operational 

side of the problem, we find evidence that carriers tend to add extra time to flights in response to jet 

fuel price increases: the coefficient of the FUELP variable is statistically significant and positively 

associated with EXTBT in all specifications. This result support that jet fuel price hikes provoke 

drops in the expected cost indexes of future flights, leading airlines to set slower planned cruise 

speeds, and consequently longer flight durations, targeting fuel consumption reductions as a 

response to the expected higher cost pressure. In contrast, on the strategic side, the results of Table 

3 suggest that carriers schedule longer block times on routes with higher competition - i.e. with 

lower market concentration. The negative and statistically significant coefficient of HHI is in line 

with the findings of Prince & Simon (2009), which found that in more competitive routes, a more 
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intense service-quality competition is observed.30 We therefore find evidence of actual schedule 

padding by carriers - a strategic behavior that is ceteris paribus to operational, cost-index-related 

factors that may also provoke block time lengthening. 

The positive and statistically significant coefficient of the DENS variable in Table 3 provides 

evidence that carriers have dual motivations to strengthen their EXTBT, stemming from operational 

and market incentives. As discussed, denser routes are usually associated with increased operational 

complexity stemming from flight connections, but are also the markets in which carriers are more 

concerned with the satisfaction of passengers, such as to minimize damages in their overall 

institutional reputation. The reputational risk contagion - i. e. the quick spread of negative consumer 

assessments, either from online reviews and/or through word-of-mouth -, from one route to the entire 

system may be higher on those routes due to the higher size of the travelling public. 

Let us now turn to Table 4. Our key research interest here is to investigate the impact of the extra 

block time addition (EXTBT) on the odds of flight delays (ODDSDEL). In line with Miranda & 

Oliveira (2018), our preferred model (Column 4) provides evidence that one additional minute of 

extra block time is associated with a reduction of approximately thirteen percent in the odds of flight 

delays,31 as shown by the estimated coefficient of -0.1338 of the variable EXTBT. However, given 

the positive and statistically significant coefficients of the interaction variables EXTBT × SLOTPR 

and EXTBT × CASCDEL, we have that such effect is clearly moderated by the status of the 

operating conditions at the endpoint airports. More specifically, the reduction in the odds of flight 

delays allowed by extra block times is less effective on routes operated at airports under airport slot 

regime, and on routes subject to more frequent episodes of propagated delays. In contrast, we find 

no evidence that the intensity of runway utilization (RWYCONG) moderates the relationship 

between ODDSDEL and EXTBT. 

 

  

 

30 Kang & Hansen (2017) find that airlines set longer SCHBT are longer in highly competitive markets. Here we 

further explore the issue by examining the relationship between competition and EXTBT. 
31 With a 95% confidence interval of [-15.41, -11.35].  
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Table 3 - Estimation results: extra scheduled block time (EXTBT) 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 EXTBT EXTBT EXTBT EXTBT EXTBT EXTBT EXTBT EXTBT 

FUELP (lagged) 0.7601*** 0.6676*** 0.6639*** 0.6722*** 0.6541*** 0.6264*** 0.3978** 0.5023** 

DENS (lagged) 0.1983** 0.1747* 0.2200** 0.2227** 0.2065** 0.2317*** 0.3568*** 0.4014*** 

FREQ (lagged) -0.2194* -0.2087* -0.2751** -0.3110*** -0.2997*** -0.2989*** -0.5314*** -0.6269*** 

ASIZE (lagged) -0.0512*** -0.0514*** -0.0508*** -0.0506*** -0.0507*** -0.0475*** -0.0495*** -0.0562*** 

RWYCONG (lagged) 0.0151* 0.0150* 0.0140* -0.0014 -0.0012 0.0009 0.0186 -0.0116 

SLOTPR (lagged) -0.0418*** -0.0426*** -0.0427*** -0.0425*** -0.0444*** -0.0391*** -0.0468*** -0.0246** 

HHI (lagged) -0.0235*** -0.0242*** -0.0201** -0.0199** -0.0203** -0.0173** -0.0229*** -0.0234*** 

T -0.0406*** -0.0394*** -0.0392*** -0.0392*** -0.0395*** -0.0381*** -0.0353*** -0.0365*** 

T × QUALREG 0.0300*** 0.0315*** 0.0310*** 0.0309*** 0.0309*** 0.0278*** 0.0258*** 0.0275*** 

T × SLOTREG -0.0115*** -0.0115*** -0.0110*** -0.0109*** -0.0105*** -0.0096*** -0.0136*** -0.0169*** 

T × ATMREG 0.0037 0.0036 0.0038 0.0039* 0.0039* 0.0032 0.0031 0.0022 

CASCDEL (lagged)  0.0401*** 0.0323** 0.0315** 0.0296** 0.0300** 0.0166 -0.0078 

UNC (lagged)   0.1325*** 0.1142*** 0.1137*** 0.1253*** 0.0871*** 0.0128 

RWYCONG × UNC (lagged)    0.0023** 0.0024** 0.0017 0.0017 0.0033** 

         

UNIBT* 5th pctl 

route-airc-

time 

5th pctl 

route-airc-

time 

5th pctl 

route-airc-

time 

5th pctl 

route-airc-

time 

5th pctl 

route-airc-

time 

10th pctl 

route-airc-

time 

5th pctl 

route-airc 

5th pctl 

route-airc-

time 

Route fixed effects yes yes yes yes yes yes yes yes 

Nr lags (regressors) 3 3 3 3 3 3 3 12 

High-dim controls         

Dir-Reg-Seas controls  19/288 44/288 44/288 41/288 no 41/288 41/288 36/288 

Airline controls 29/37 29/37 29/37 29/37 30/37 29/37 29/37 29/37 

Aircraft controls 38/39 38/39 38/39 36/39 36/39 36/39 36/39 37/39 

R2 Adj Statistic 0.2930 0.2938 0.2944 0.2942 0.2933 0.2803 0.3171 0.3100 

RMSE Statistic 12.6047 12.5975 12.5915 12.5933 12.6013 12.3196 12.2037 12.2186 

Nr Observations 41,643 41,643 41,643 41,643 41,643 41,643 41,643 39,443 

Notes: results produced by the post-double selection (PDS), LASSO-based, methodology of Belloni et al. (2012, 2014a,b). Post-LASSO estimation is implemented with a fixed effects procedure with 

standard errors robust to heteroskedasticity and autocorrelation. Selected control estimates omitted; R2 adjusted and RMSE statistics extracted from an equivalent least-squares dummy variables 

estimator (LSDV); p-value representations: ***p<0.01, ** p<0.05, * p<0.10. 
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Table 4 - Estimation results: odds of flight delays (ODDSDEL) 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 ODDSDEL ODDSDEL ODDSDEL ODDSDEL ODDSDEL ODDSDEL ODDSDEL ODDSDEL 

DENS 0.5449*** 0.1923*** 0.2214*** 0.2219*** 0.2192*** 0.2204*** 0.2365*** 0.2472*** 

FREQ 0.0144 0.1059* -0.0403 -0.0303 -0.0454 -0.0098 -0.1010 -0.0305 

ASIZE 0.0344** 0.0145 0.0140 0.0118 0.0149 0.0120 0.0142 0.0168 

RWYCONG 0.0293*** 0.0213*** 0.0210*** 0.0268*** 0.0252*** 0.0254*** 0.0255*** 0.0283*** 

SLOTPR 0.0399*** 0.0134*** 0.0067 -0.0014 0.0002 0.0007 -0.0036 -0.0036 

HHI (endogenous) 0.1501*** -0.0061 -0.0142 0.0016 -0.0172 0.0072 -0.0214 0.0313 

T -0.0172*** 0.0134*** 0.0085* 0.0096** 0.0082* 0.0107** 0.0083* 0.0148*** 

T × QUALREG -0.0289*** -0.0109*** -0.0077*** -0.0078*** -0.0074*** -0.0085*** -0.0083*** -0.0089*** 

T × SLOTREG -0.0030 -0.0041*** -0.0039*** -0.0039*** -0.0042*** -0.0038** -0.0048*** -0.0040*** 

T × ATMREG -0.0000 -0.0018 -0.0014 -0.0014 -0.0013 -0.0014 -0.0013 -0.0009 

CASCDEL  0.6760*** 0.6757*** 0.6586*** 0.6584*** 0.6570*** 0.6320*** 0.6591*** 

EXTBT   -0.1070*** -0.1338*** -0.1361*** -0.1318*** -0.1785*** -0.1413*** 

EXTBT × RWYCONG    -0.0002 -0.0002 -0.0001 -0.0000 -0.0003 

EXTBT × SLOTPR    0.0005*** 0.0004** 0.0004** 0.0006*** 0.0004** 

EXTBT × CASCDEL    0.0011** 0.0012*** 0.0014*** 0.0022*** 0.0017*** 

         

UNIBT* - - 5th pctl 

route-airc-

time 

5th pctl 

route-airc-

time 

5th pctl 

route-airc-

time 

10th pctl 

route-airc-

time 

5th pctl 

route-airc 

5th pctl 

route-airc-

time 

Route fixed effects yes yes yes yes yes yes yes yes 

Nr lags (regressors) 3 3 3 3 3 3 3 12 

High-dim controls         

Dir-Reg-Seas controls  35/288 67/288 67/288 53/288 no 58/288 55/288 44/288 

Airline controls 29/37 29/37 29/37 29/37 29/37 29/37 29/37 29/37 

Aircraft controls 37/39 37/39 37/39 34/39 34/39 34/39 34/39 33/39 

High-dim instruments 7/61 7/61 7/61 7/61 7/61 7/61 7/61 5/61 

R2 Adj Statistic 0.3143 0.5193 0.5357 0.5359 0.5323 0.5333 0.5421 0.5500 

RMSE Statistic 7.8194 6.5465 6.4344 6.4328 6.4573 6.4508 6.3899 6.3347 

Nr Observations 39,450 39,450 39,450 39,450 39,450 39,450 39,450 37,545 

Notes: results produced by the post-double selection (PDS), LASSO-based, methodology of Belloni et al (2012, 2014a,b). Post-LASSO estimation is implemented with a 2-step generalized method of 

moments (2SGMM) estimator with a fixed effects procedure and standard errors robust to heteroskedasticity and autocorrelation. Selected control estimates omitted; R2 adjusted and RMSE statistics 

extracted from an equivalent least-squares dummy variables (LSDV) estimator; p-value representations: ***p<0.01, ** p<0.05, * p<0.10. 



23 

 

Most other results in Tables 3 and 4 are in line with our ex-ante expectations regarding signs and 

statistical significance of the estimated coefficients. For example, in Table 3 we find negative and 

significant coefficients of the FREQ variable, suggesting that carries have higher operational 

efficiency - i. e. lower time-related costs with respect to fuel costs in their cost indices - on routes 

with higher frequency flights;32 we also find that both the levels of propagated delays (CASCDEL) 

and uncertainty (UNC) perceived by planners at the scheduling decision-making period increase 

EXTBT. In Table 4, all models show evidence that denser routes (DENS), and routes operated 

to/from airports with more congested runways (RWYCONG), are more likely to present delayed 

flights. The former set of routes, but not the latter, are associated with longer extra scheduled block 

times, as presented in Table 3. Therefore, even with block time lengthening, flights on denser routes 

still seem to be the ones that delay the most. Importantly to note, we only find evidence of a direct 

effect of airline competition on the odds of flight delays in Column (1) of Table 4, with the 

statistically significant coefficient of HHI. Such effect is fully dissipated when the CASCDEL 

variable is inserted in the model (Column 2) and persists statistically insignificant in the other 

columns.33  

4.1. Estimated impacts of the regulatory reform events 

A key topic in our empirical analysis of the extra block time - and schedule padding - formation 

by carriers in Brazil is related to the events of regulatory reform observed in the sample period. We 

find the following results in Tables 3 and 4. Before the introduction the on-time disclosure rules of 

2012, carriers had an estimated trend to lessen their block time lengthening behavior in the market, 

apparently tolerating a concomitant trend of increase in the odds of delays in their flights. Indeed, 

the estimated coefficients of variable T in most columns of Tables 3 and 4 are statistically significant, 

and negative and positive, respectively. After the regulatory reform, however, both trends are almost 

fully dissipated: the coefficient of the interaction variable T × QUALREG is positive in Table 3 and, 

in most cases, negative in Table 4, with estimated effects of almost the same magnitude of the 

estimated coefficient of T. This is suggestive that the new regulation has apparently provoked an 

intensification in the schedule padding behavior by airlines. We argue that such movement can be 

classified as “schedule padding” as it is ceteris paribus to the other factors related to operations, and 

may have been motivated by the need to strategically position in the market with the new on-time 

disclosure requirements. A similar phenomenon is reported in the US market after the 

 

32 This result may be a consequence of the lower turnaround times of carriers with higher flight frequency. 
33 This is in contrast with Bendinelli, Bettini, & Oliveira (2016), which obtain statistically significant results for both 

variables. We recommend that further investigation is required into this issue. 
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implementation of similar regulation, as observed by Shumsky (1993), Forbes, Lederman, & Wither 

(2019) and Yimga & Gorjidooz (2019). 

The second regulatory reform observed in the sample period was the 2014 airport slots new 

regulation. Again, analyzing Tables 3 and 4 jointly, we first note that routes associated with slot-

constrained airports present less mean extra scheduled time addition, and higher propensity to delay 

- as indicated by the estimated coefficients of SLOTPR in those tables. However, the analysis of the 

results regarding variable T × SLOTREG show that the new regulation has provoked a drop in both 

EXTBT and ODDSDEL. Indeed, most estimates of those coefficients in both tables are negative and 

statistically significant. These results indicate that the introduction of a stricter and more 

comprehensive regulation of airport slots since 2014 may have been effective in reducing flight 

delays, and thus reducing the need of block time lengthening by carriers - a result that is in line with 

Fan (2019). 

Regarding the implementation of the PBN operations in some Brazilian airports since the early 

2010s, the estimated coefficient of the interaction term T × ATMREG suggests no statistically 

significant effect, as displayed in Tables 3 and 4. Although our results indicate that the new ATM 

regulatory framework has not produced effects on the extra scheduled block times (EXTBT) of 

carriers, it may have produced effect on the unimpeded block times (UNIBT), however. Anyway, 

PBN has apparently did not produced any effect on the likelihood of flight delays (ODDSDEL). 

4.2. Robustness checks 

We developed a set of robustness checks aiming at studying the sensitivity of our main estimation 

results displayed in the fourth columns of Tables 3 and 4. We present the results of these experiments 

in Columns (5), (6), (7), and (8) of those tables. First, in the Columns (5) of Tables 3 and 4 we 

experiment with an estimation procedure that does not include any region-direction-seasonal 

dummy, namely the DIRo
k,s and DIRd

k,s controls discussed in Section 3.4. Second, in the Columns 

(6) of both tables, we experiment with the 10th percentile of the actual block times distributions as 

an alternative measure of UNIBT* when computing EXTBT. Third, in Columns (7), we utilize 

another alternative measure of UNIBT*, this time extracting its values at the route-aircraft level, 

instead of the route-aircraft-time levels utilized in all other columns. As a final robustness check, in 

the Columns (8) of Tables 3 and 4 we change the number of lags employed to compute the lagged 

regressors of the EXTBT model, and the lagged instrumental variables of the ODDSDEL model. 

We consider a scheduling decision-making window equal to 12 months, and therefore set the number 

of lags h = 12. As it can be analyzed in the estimates of Columns (5)-(8) in Tables 3 and 4, in none 

of the robustness checks did we observe significant changes in the main results. 
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5. Conclusion 

This paper investigates the main drivers of the extra times incorporated into the flight schedules 

of Brazilian airlines. We utilize an econometric method of high dimensional sparse (HDS) regression 

that employs the Least Absolute Shrinkage and Selection Operator (LASSO) of Tibshirani (1996) 

to select adequate controls from a vast set of available variables. Our estimation has the 

methodological contribution of decomposing the extra schedule block times into operational and 

strategic factors, after controlling for the uncertainty in the scheduling process. We also estimate the 

effect of extra times on flight delays, allowing for moderation effects of runway congestion, slots, 

and propagated delay. Finally, our empirical framework allows accounting for a set of key regional 

and seasonal unobserved effects that are formed at the route level. In particular, we include deeper 

route direction-specific controls to account for the potential impact of prevailing winds - a procedure 

that may be even more relevant in other realities characterized by strong jet streams that affect en 

route performance of flights.  

Our results show evidence that the extra time inserted by carriers in their flights can be 

decomposed into the adjustments following changes in flight operating conditions, and also the 

strategic buffer time. We find evidence confirming the hypothesis of the existence and effectiveness 

of schedule padding practices, i.e. extra time additions that are correlated with the status of the 

competition in the market. Furthermore, the empirical results of on-time performance suggest that 

one additional minute of extra time is associated with a reduction of roughly thirteen percent in the 

odds of flight delays, which apparently is an effective strategy to enhance on-time performance.  

With respect to the policy implications of our study, the estimation results suggest that on-time 

disclosure regulation, implemented since 2012, have possibly encouraged airlines to strategically 

lengthen their flight times. We also estimate a decreasing trend in the odds of flight delays after the 

introduction of the new regulation. In contrast, the implementation of slot controls at major airports 

since 2014 have apparently inhibited the addition of extra block time by carriers.  

After all, are on-time performance statistics worthless? Our empirical results show evidence that 

the current official punctuality statistics may not always allow for reliable analyses of on-time 

performance in the Brazilian airline industry - and possibly in other countries -, as on-time disclosure 

regulations may create incentives for airlines to engage in schedule padding behavior. The problem 

associated with the strategic buffers is that they misalign the incentives of carriers in their pursuit of 

maximum operational efficiency and optimized cruise speeds dictated by cost indexes. The padding 

behavior induces a suboptimal exploitation of flight resources, and may mask the infrastructure 

inefficiencies that provoke airport congestion and propagated delays, specially in moments when 

the air transport industry is growing fast. 
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