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Abstract 

This paper describes an econometric model of the Brazilian domestic carrier Azul Airlines’ network 

construction. We employed a discrete-choice framework of airline route entry to examine the effects 

of the merger of another regional carrier, Trip Airlines, with Azul in 2012, especially on its entry 

decisions. We contrasted the estimated entry determinants before and after the merger with the 

benchmarks of the US carriers JetBlue Airways and Southwest Airlines obtained from the literature, 

and proposed a methodology for comparing different airline entry patterns by utilizing the kappa 

statistic for interrater agreement. Our empirical results indicate a statistically significant agreement 

between raters of Azul and JetBlue, but not Southwest, and only for entries on previously existing 

routes during the pre-merger period. The results suggest that post-merger, Azul has adopted a more 

idiosyncratic entry pattern, focusing on the regional flights segment to conquer many monopoly 

positions across the country, and strengthening its profitability without compromising its 

distinguished expansion pace in the industry. 
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1. Introduction 

Route entries, their effects, and what drives carriers to announce new destinations to their 

networks are essential topics that still hold interest in the air transport industry. Market entry, in 

general, is a highly explored empirical theme in many areas such as economics, management, and 

marketing literature (Dixit & Chintagunta, 2007), the reason being that it not only spurs competition 

but may induce innovation (Hüschelrath & Müller, 2011). Not surprisingly, one of the crucial 

elements of both incumbent and newcomer airlines’ strategic planning that can be impacted by the 

competitive dynamics that follow market entry is their business model as transformations and 

adaptations to newly established market environments may emerge. 

This study considers the case of Azul Airlines in the Brazilian air transport industry. Azul Airlines 

was established in 2008 by David Neeleman, founder of JetBlue, one of the largest low-cost carriers 

(LCCs) in the US market, and certainly a good reference for the newcomer’s startup period. From 

serving only three destinations in December 2008, Azul has become the third largest airline in Brazil, 

and now serves more domestic destinations than any other carrier since the new millennium.1 Not 

even the giant legacy carrier Varig and its group of regional carriers in the early 2000s had a network 

that reached the mark of 110 served destinations with scheduled flights in Brazil.  

Azul typically explores short- and medium-haul markets from smaller airports, a characteristic 

that, in principle, reminds us of Southwest Airlines (Boguslaski et al., 2004). It also operates the 

only major secondary airport in the country, São Paulo/Campinas (VCP). However, contrary to the 

notable US LCC, Azul is far from maintaining a standardized fleet, and since its launch has entered 

a diversified portfolio of low-, medium-, and high-density routes. So far, the only constraint to the 

carrier’s expansion has probably been the lack of availability of departure and landing slots at São 

Paulo/Congonhas Airport (CGH), a key airport in Brazil. 

One motivation for studying the case of Azul Airlines is to investigate its change in its business 

model across the years and how these changes may have affected its network and route entry 

decisions. A major landmark in Azul’s journey was its merger with Trip Airlines in May 2012, when 

it was just three years old. On the one hand, it still resembled a low-cost carrier, with a clear 

penetration pricing strategy to quickly promote traffic growth and consumer awareness in more 

densely populated markets such as São Paulo, Porto Alegre, Salvador, Rio de Janeiro, and Belo 

Horizonte metropolitan regions. Trip, on the other hand, was the largest regional carrier in Latin 

America with an extensive network coverage across the country. 

 
1 “Azul S.A. Form 20-F.” Filed with the United States Securities and Exchange Commission, April 30, 2021, available 

at ri.voeazul.com.br. Figures relative to 2020. 
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In this study, we developed an econometric model of network construction for Azul Airlines in 

the Brazilian airline industry. Our aim was to identify the effects of the 2012 merger and how this 

event affected the carrier’s route entries. So far, the literature has not discussed the possible effects 

of a merger on an airline’s entry decision and how it might affect its network planning. This study 

fills this gap by investigating how the merger with Trip impacted Azul’s entry decision in the post-

merger period. We employed a discrete-choice framework of entry decisions, applying the simple 

probit, random-effects probit, and rare event logistic regression models to a data set that comprised 

more than one million observations from thousands of domestic airport pairs across the 2008–2018 

period.  

We contrasted the estimated entry determinants before and after the merger with the benchmarks 

of JetBlue Airways and Southwest Airlines obtained from the literature, namely Boguslaski, Ito, and 

Lee (2004), and Müller, Hüschelrath & Bilotkach (2012), hereafter BIL04 and MHB12, 

respectively. Additionally, we propose a methodology for comparing different airline entry patterns 

by utilizing the Kappa statistic for inter-rater agreement (Cohen, 1960).  

The next sections of this research are divided as follows: Section 2 presents the literature review 

on entry in airline markets, and the studies that covered the empirical issue of airline entry patterns. 

Section 3 presents the research design, with a description of the application, the data, the 

econometric model, and the estimation strategy. Section 4 presents the estimation results and our 

proposed method for entry patterns comparisons. Finally, Section 5 concludes. 

2. Literature review 

The worldwide expansion of the airline industry is closely tied to the Airline Deregulation Act in 

the US and the subsequent growth of low-cost carriers. Understanding how airlines plan their 

network and market entries would inevitably lead to the way to understand how LCCs work. 

The original business model of LCCs had the following characteristics.2 They served short-haul 

routes, used regional or secondary airports, operated point-to-point, and had limited (or without) 

customer loyalty programs, limited passenger services (no frills), a high proportion of bookings 

made through the internet, high fleet utilization, and a standardized fleet. 

Today, most LCCs do not strictly follow the expected characteristics of their business models. 

Due to the dynamic nature of the civil aviation industry, airlines are becoming more standardized in 

terms of their operations and business models to achieve higher operational and financial efficiency. 

This standardization in the airline industry is also known as business model convergence or 

hybridization (Daft and Albers, 2015; Jarach et al., 2009; Urban et al., 2018). Despite the airline 

 
2 IATA Economics Briefing n.5, 2006. 
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hybridization trend, many studies in the literature still adopt the classification of low-cost carriers 

and full-service carriers to refer to certain airlines, depending on their initial business model. This 

study also uses these classifications to refer to certain airlines as LCCs, such as Southwest, JetBlue, 

and Azul, despite the gradual change in their original business model over the years. 

2.1. Entry into airline markets 

Early research on the impacts of an LCC entry assessed how these airlines could affect airfares 

and flight demand in the airline industry. With the success of Southwest Airlines, the largest LCC 

in the world, this business model has been replicated worldwide; the model strategy has even 

changed, moving towards hybridization. At the same time, new airlines have entered the industry 

with a new way of applying low-cost philosophy, such as ultra LCCs (ULCCs).  

Although change in pricing behavior was one of the first studied effects of low-cost entry, the 

topic remains a favorite with researchers. The research is motivated by changes in the air travel 

market, such as the hybridization of airline business models and the entry of ULCCs. Studies show 

that LCCs can still reduce airfares (Asahi & Murakami, 2017; Chen, 2017; Zhang et al., 2018; Ren, 

2020), but they are no longer as effective when compared to ULCCs (Bachwich & Wittman, 2017; 

Zou et al., 2017). In addition to affecting rival pricing behaviors, many studies found, LCCs could 

affect the operation and business strategy of their rivals. Additionally, they can affect the capacity 

decisions of other airlines, such as the size of the aircraft used on a particular route or frequency of 

flights, and even force rivals to change their flight times to avoid competition (Pearson et al., 2015; 

Sun, 2015; Bendinelli et al., 2016; Mohammadian et al., 2019). Current studies on charter flights 

have also confirmed the trends in the literature, as low-cost airlines have effectively replaced charter 

airlines (Wu, 2016; Castillo-Manzano et al., 2017). Overall, studies show that low-cost carriers force 

their rivals to respond to them to not lose their dominant position in the market, by reducing their 

airfares or adapting their operations for better efficiency. 

Several studies have also investigated the effect of LCCs on airport revenue by examining whether 

airports were experiencing any financial benefits from an association with an LCC but no clear 

consensus has emerged. While some studies have shown a negative or zero effect of LCC on 

financial efficiency (Yokomi et al., 2017; Zuidberg, 2017), others have reached the opposite 

conclusion (Augustyniak et al., 2015; Button et al., 2017; Martini et al., 2020). Given this lack of 

consensus, Tavalaei and Santalo (2019) argue that, to assess the real effects of LCCs on airports’ 

financial performance, researchers should consider the strategic purity of the airport or the number 

of LCCs operating there. As airport managers increasingly struggle to obtain competitive 

advantages, especially in areas with multiple airports, there have been several studies that have 

concluded that airport managers should offer LCC flights at their airports as a way to increase their 
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connectivity (Zhang et al., 2017) and even offer facilitation services for passengers who opt for self-

connections (Chang et al., 2019). The latter segment of the industry has not yet been widely explored 

by airports but has potential for future growth (Cattaneo et al., 2017) 

There are also studies on the general effects of LCCs on air travel demand. Recent studies still 

find the Southwest effect, which is the rising passenger demand on routes served by LCCs (Rolim 

et al., 2016; Boonekamp et al., 2018). However, some of these studies have problems with positive 

marginal effects due to the limited number of LCC flights analyzed in different regions (Valdes, 

2015; Tsui & Fung, 2016). Recent studies have confirmed the vast literature on tourism demand that 

shows the positive effects of LCCs on tourism (Alsumairi & Tsui, 2017). Moreover, some suggest 

that the airport or even the local government should attempt to attract LCCs to bolster the local 

economy (Álvarez-Díaz et al., 2019). Studies aver that LCCs can promote the development of a 

region, even when it is not a tourist destination (Bowen Jr., 2016; Taumoepeau et al., 2017). 

When analyzing the effects of LCC on passenger choice, other studies have shown that the 

presence of an LCC is an essential factor for air transport systems users to exercise their choices. 

Most studies have explored general passenger and airline choice decisions (Kim, 2015; Saffarzadeh 

et al., 2016; Paliska et al., 2016; Yang, 2016; Hunt & Truong, 2019), while some have analyzed 

specific air transport system users, such as students checking the availability of a low-cost route 

between their cities and the university (Cattaneo et al., 2016) or tourists choosing a destination 

served by LCC flights (Clavé et al., 2015). Borhan et al. (2017) even expanded the literature by 

investigating how LCCs can influence automotive drivers to change transport modes, showing that 

low-cost flights can be an essential factor for drivers to start flying. 

2.2. Airline entry patterns 

The literature on airline network construction is generally tied to the US airline market 

deregulation in 1978. Most of the research tend to analyze the airline market as a whole, not focusing 

on LCCs. For example, Morrison and Winston (1990) analyzed the dynamics of airline pricing and 

competition in the airline industry. Regarding the entry and exit of airlines, they used a probit model 

and found that when a carrier is already operating at a pair of airports, it significantly impacts its 

entry decision owing to the knowledge of the demand, and a competitor’s activity at a pair of airports 

does not discourage entry. According to them, a high fare on a given route negatively affects entry 

decisions. Although this was not an intuitive and expected result, the authors (1990) explained that 

some of these high-fare routes presented entry barriers, high costs, or incumbent carriers’ aggressive 

responses, affecting the estimation of coefficients. 

Joskow et al. (1994) found a similar result to Morrison and Winston (1990) as entry is driven by 

cost factors, specifically that airlines tend to enter city pairs if the price (or fare) is low. Sinclair 
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(1995) further expanded the literature by showing strong evidence that airlines’ entry and exit 

decisions are affected by the size and utilization of a hub-and-spoke system; an incumbent with a 

robust hub system can inhibit entry, while an entrant with a robust hub system will enter the market. 

Dresner et al. (2002) studied the effects of barriers on entry decisions, showing that slot controls, 

gate constraints, and gate utilization during peak hours negatively affect entry decision. Gil-Moltó 

and Piga (2008) analyzed the European airline market in terms of low-cost and traditional carrier 

entry. Among the different variables tested, some of them confirmed the existing literature results, 

like the previous presence in a city pair, but some variables presented interesting results. For 

example, the number of companies already operating on a route is positively correlated with entry. 

The authors explained this result as a lower number of companies in a route is due to the presence 

of a dominant airline or entry barriers. Alternatively, the market size presented a negative 

correlation, which can be explained by the dominant airline or entry barrier. American and European 

airlines have a hub model in which some airlines dominate certain airports using them as operating 

hubs. Owing to their operations’ scale, even with a large market size, it acts as an entry barrier and 

inhibits competitors’ entry. 

Regarding the literature on LCC entry patterns, Ito and Lee (2003) analyzed LCCs’ growth in the 

US airline industry and factors that influence their entry. According to them, the most important 

predictor of an LCC entry is market density. In their study, the price variable positively affected 

entry decision, contrary to previous research on network carriers, for example, Morrison & Winston 

(1990) and Joskow et al. (1993), showing that LCCs concentrate their entry in markets where 

incumbents were earning a large price markup. Boguslaski et al. (2004) further expanded the 

literature by analyzing Southwest’s entry strategy evolution over the years, finding a change in 

behavior in choosing routes to operate, from dense and short to thin and long-haul markets. Both 

these works suggest that LCCs are no longer bound to fly only dense and short-haul markets and 

serve leisure passengers, and that network carriers face increased exposure to LCC competition over 

time. 

Warnock-Smith and Potter (2005) used a qualitative approach to this matter and concluded that 

high demand is an essential factor for LCCs to choose which airports to enter. According to them, 

other essential factors are quick turnaround facilities, convenient slot times, and high airport 

competition. Analyzing the LCC entry patterns in Brazil, Oliveira (2008) concluded that airline entry 

behavior was consistent with the classic Southwest entry pattern, focusing on dense and short-haul 

routes. He also found exciting evidence that the Brazilian LCC had changed its entry pattern 

following its foundation, pairing with JetBlue’s entry pattern and focusing on long-haul routes, and 

explained it as an effect of the country’s idiosyncrasies, such as unobserved economies of scope. 
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Müller et al. (2012) studied the entry pattern of LCC JetBlue Airlines in the US domestic airline 

industry. They showed that JetBlue consistently avoided concentrated airports and instead targeted 

concentrated routes by using secondary airports on thicker routes, avoiding competition with 

network carriers. They also showed that JetBlue targeted longer-haul markets on non-stop markets 

and avoided slot-restricted airports and routes already operated by other LCCs. 

Boguslaski, Ito, and Lee (2004) and Oliveira (2008) conclusion that LCC entry patterns changed 

over time was also studied by de Wit and Zuidberg (2012) in their work on the growth limits of the 

LCC model. They analyzed the European and American airline markets and concluded that the 

continental market showed signs of saturation for LCCs. They identified new business strategies 

adopted by LCCs, including shifting to primary airports, hubbing, entering codeshare agreements or 

alliances, and acquiring or merging with other airlines. 

Homsombat et al. (2014) studied the route entry strategy of Qantas Airways and its low-cost 

subsidiary Jetstar Airways in the Australian domestic market. They concluded that Jetstar tended to 

enter routes where other LCCs compete directly with them, and the group’s main market strength 

was its presence in a large number of routes, both from full-service carriers (Qantas) and LCCs 

(Jetstar). Zhang et al. (2017) examined the Australian airline industry by focusing on regional 

segments. In line with Homsombat et al. (2014), their results suggest a strategic competition between 

airline brands. Wang et al. (2020) explored the airline market in New Zealand, suggesting favorable 

regional socioeconomic and tourism factors as relevant determinants of route entry. 

In the Asian market, Fu et al. (2015) investigated the case of Spring Airlines, an LCC in China, 

one of the largest emerging air markets but with strict civil aviation regulations. The Chinese 

government controls fuel supply, airport fares, aircraft purchases, and even entry decisions as routes 

connecting to its main airports (Fu et al., 2014; 2015). Even so, these regulations have not prevented 

LCCs from operating in this market. According to Fu et al. (2015), Spring Airlines’ strategy is to 

enter routes with high average fare prices, and allowing a high aircraft load factor by offering 

cheaper tickets. Another strategy adopted by Spring is to enter routes not linked to major airports in 

the country (partly because of regulations), except its hub Shanghai, which suggests that Spring 

prefers to link its new destinations with Shanghai airport. 

Wang et al. (2017) continued this discussion and analyzed the entry patterns of LCCs in the Hong 

Kong market, which is regulated by the Chinese government. The authors found results consistent 

with those found by Fu et al. (2015), and pointed out that low-cost airlines in this market prefer 

dense markets with high per capita income, and that the presence of other airlines on the route did 

not discourage entry. 

Dobruszkes et al. (2017) studied the LCC shift to primary airports, one of the new business 

strategies cited by Wit and Zuidberg (2012). They also analyzed the European and US low-cost 
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airline markets, reasoning that both markets are maturer than other regions. Their work analyzed 

data from Ryanair and Southwest until 2015 and confirmed the trend of increased operations from 

major airports, which implies an increase in competition between LCCs and traditional network 

carriers. 

Nguyen and Nguyen (2018) studied the entry and exit patterns of US airlines. According to their 

model, seven significant factors explain entry decisions: total number of passengers, average market 

fare, number of carriers, distance, presence of an LCC, origin hub, and destination hub. Exit 

decisions too can be explained by all of these factors, with the addition of route type and the business 

model for the dominant airline on the route. 

Atallah et al. (2018) analyzed the evolution of airline strategies in the US market using data from 

2005 to 2015, before and after the recession, to investigate any change in these companies’ entry 

patterns. The authors found results consistent with previous research on low-cost airlines in terms 

of their entry into the country’s primary airports and highly competitive routes. The authors also 

found a strategic difference between LCCs and FSCs: while the former focused on entering different 

markets in this period, testing new routes for unmet demand, the latter focused on offering higher 

flight frequency on existing routes, trying to strengthen its position in the market. Similarly, Zou 

and Yu (2020) analyzed the evolution of entry patterns from Southwest and JetBlue using data from 

1993 to 2016. Their results show that both airlines tend to enter routes that can be the dominant 

carriers. They also confirmed the results by Ito and Lee (2003), showing that Southwest has indeed 

changed its entry behavior over time, entering longer and less dense routes. The results also 

confirmed the findings of Müller et al. (2012), showing that JetBlue consistently prefers longer 

distance routes. Finally, their results show that, at some point, the presence of an LCC in the route 

was a deterrent to both Southwest and JetBlue, but over the years, its significance has been 

decreasing. 

The literature on airline entries has been concerned with analyzing LCCs’ changing strategies in 

mature markets, such as the US and Europe. Additionally, the literature has also analyzed these 

airlines’ behavior in emerging markets, showing that despite being studied since US civil aviation 

deregulation, it is still a relevant topic in the industry. Understanding where the literature will go 

from this point on is essential to understand where the airline market itself is going. In the literature, 

authors such as de Wit and Zuidberg (2012) pointed out new business strategies that LCCs could 

adopt, including a shift to primary airports, hubbing, codeshare agreements, alliances, and mergers 

and acquisitions. While Dobruszkes et al. (2017) have already studied the shift to the primary airport, 

and hub airports have been analyzed since Sinclair (1995), the other two strategies have not yet been 

well explored in the literature and could be further investigated.  
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Many other studies have recently investigated the impact of entry in airline markets, such as Zhang 

et al. (2017), Fu et al. (2019), and Zhang et al.. (2019), Valido et al. (2020), and Wang et al. (2020). 

Wang et al. (2017) estimate that Asian LCCs prefer large markets with large populations and high 

incomes and traffic volumes. Gaggero and Piazza (2021) show that airlines tend to follow the market 

leader and enter a route served by the incumbents, and that entry is more likely when the airline 

operates other routes at the two endpoint airports of a route. Zou and Yu (2020) investigated the 

similarity and dissimilarity between Southwest and JetBlue, and found that the former has become 

more attracted to routes with connections to be better positioned for the business passenger segment. 

Bet (2021) shows evidence that airline incumbents’ actions are more prone to deter, rather than 

accommodate, entry. 

3. Research design 

3.1. Application 

We investigated some of the main factors that may have driven Azul Airlines’ route entry and exit 

decisions in the domestic market since the late 2000s. Neeleman is a serial entrepreneur of the airline 

industry, who founded Morris Air, WestJet, JetBlue Airways, and Breeze Airways. He was 

motivated to invest in the Brazilian airline industry at that time by fast market growth and high 

concentration. In December 2008, Azul started its hub operations based on São Paulo/Campinas 

Airport (VCP), a secondary airport in the São Paulo metroplex region. From only two nonstop 

destinations out of VCP at its launch, Azul has considerably expanded its network to become the 

third largest airline, with more than 110 destinations across the country, 168 aircraft and 27.7% 

market share.3 The two largest airlines in the domestic market are the low-cost carrier Gol Airlines 

(38.1%) and the full-service carrier LATAM Airlines (33.7%). VCP has considerably benefited from 

Azul’s growth, from less than a million passengers in 2008 to more than 10 million six years later. 

Azul’s other hubs are Belo Horizonte/Confins Airport (CFN) and Recife Airport (REC).  

At the time of their merger in 2012,4 Trip was a Brazilian and then largest Latin American regional 

airline. With this merger, the Azul-Trip group became the third largest airline in Brazil, serving 96 

destinations. Post-merger, there was a period in which the Azul-Trip group adjusted its network by 

exiting non-profitable cities until reaching the current network configuration, serving 464 city-pairs 

as of December 2018. 

 
3 “Azul S.A. Form 20-F.” Filed with the United States Securities and Exchange Commission, April 30, 2021, available 

at ri.voeazul.com.br. Figures relative to 2020. 
4 “Brazilian carriers Azul and Trip unveil merger plans,” Flight Global, May 28, 2012, available at 

www.flightglobal.com. 
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Figure 1 - Azul’s network evolution from 2008 to 2021 

 

Source: National Civil Aviation Agency’s Air Transport Statistical Database (aggregate), with own computations. 
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After the 2012 merger, Azul presented a notable evolution in the domestic air travel market. The 

carrier had a 14.2% growth in the number of enplanements between 2013 and 2018, against its peers’ 

1.4% growth. In addition, it reported the largest earnings before interest and taxes (EBIT) in the 

industry in five out of the six years from 2013 to 2018.5   

Figure 1 displays the notable evolution of Azul’s domestic network since 2008 until mid-2021. 

Although the COVID-19 pandemic significantly affected its operations in 2020, Azul has quickly 

recovered from the crisis, becoming the first airline in Brazil to reach pre-pandemic levels in 2021.6 

3.2. Data 

We collected passenger and traffic data for this study from the National Civil Aviation Agency 

(ANAC)’s Air Transport Statistical Database (aggregate), which comprises air transport supply and 

demand information aggregated at the route level (airport-pair/airline/month). Our definition of 

route is the directional airport pair. Our dataset comprises a panel of domestic routes in Brazil, with 

yearly observations between 2008 (the year of Azul’s first flight) and 2018.  

We designed a procedure for considering an amplified set of possible airport pairs of interest for 

Azul, aiming at eliminating the possible selection bias that may emerge from our sample definition 

choices. To create the dataset, we first identified all airports used by domestic commercial aviation 

(scheduled and non-scheduled) between January 2000 and August 2021. We considered a time span 

that is longer than the final sample’s period length aiming at incorporating all possible airports of 

interest to Azul. In all, 312 airports were identified, which made it possible to create 97,032 possible 

pairs of airports. Of these, 6,581 airport pairs (6.8%) had at least one flight in the period. As in 

BIL04, flights with distances below 100 miles and above 3,000 miles were discarded (a total of 

14,674 discards, or 1,334 airport pairs). The final balanced panel data set contains 1,582,140 

observations (97,032 routes times 11 years, minus 14,674 discards).  

In our dataset, we focused on the Azul-Trip merger event, which took place in 2012. To simplify 

the presentation of the empirical results, we denote the complete sample by “FULL”. We then 

consider two temporal sub-samples: the period before the Azul-Trip merger, denoted by “BEF” 

(2008-2011), containing 382,792 observations (95,698 routes times 4 years), and the period after the 

merger, denoted by “AFT” (2012-2018), containing 669,886 observations (95,698 routes times 7 

years). Additionally, we used the year 2007, prior to Azul’s entry into the industry, as a base case 

for differentiating between existing and the new routes, denoted as “EXIST” and “NEW”, 

 
5 Sources: ANAC’s Air Transport Demand and Supply Report and Financial Statements of Brazilian Airlines (2013-

2018). 
6 “Azul é a primeira companhia a recuperar índices pré-pandemia, mostram dados da Anac”, O Globo, September 24, 

2021, available at oglobo.globo.com. 
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respectively. We classified all airport pairs that had operations in 2007 as existing and the remaining 

routes as new.  

Most data are publicly available from the National Civil Aviation Agency (ANAC). Other sources 

of information are the Brazilian Institute of Geography and Statistics (IBGE), and the Central Bank 

of Brazil. To compute the socioeconomic measures related to the endpoint airports we considered 

the concept of “mesoregions”, i.e., groupings of nearby cities. All monetary variables were adjusted 

by a deflator based on the Extended National Consumer Price Index (IPCA) of IBGE. 

3.3. Econometric model 

We developed an empirical model of network construction of Azul Airlines in the domestic airline 

industry in Brazil. We built our model upon BIL04 and MHB12, with most variables being proxies 

for the variables employed in those studies. Although one of our goals was to maximize the 

comparability of our results with the findings of this previous literature, we also introduced a set of 

covariates not utilized before.  

Equation (1) presents the specification of our proposed empirical model. 

AZ𝑘,𝑡
∗ = 𝛽1PAX𝑘,𝑡 + ∑ 𝛽2,𝑖DIST 𝑖𝑘𝑖 + 𝛽3POP𝑘,𝑡 + 𝛽4INC𝑘,𝑡 + 𝛽5UNEMPL𝑘,𝑡 +

𝛽6VACATION𝑘,𝑡 + 𝛽7SECND𝑘 + 𝛽8SLOT𝑘 + 𝛽9FEE𝑘,𝑡 + 𝛽10NETWEC𝑘,𝑡 +

𝛽11ZERAZCIT𝑘,𝑡 + 𝛽12AZSHCON𝑘,𝑡 + 𝛽13HUBOTH𝑘,𝑡 + 𝛽14NONHUB𝑘,𝑡 +

𝛽15HHI𝑘,𝑡 + 𝛽16MAXHHI𝑘,𝑡 + 𝛽17MAXHHI𝑘,𝑡 × NONHUB𝑘,𝑡 + 𝛽18FSCMAJ𝑘,𝑡 +

𝛽19LCCMAJ𝑘,𝑡 + 𝛽20LCCCOMP𝑘,𝑡 + 𝛽21BANKR𝑘,𝑡 + 𝛽22REGSMA𝑘,𝑡 +

𝛽23NEW𝑘,𝑡 + 𝛽24TREND𝑡 + 𝛽25TREND𝑡 × DIST𝑘 + 𝛽26TREND𝑡 × HUB𝑘 +

𝛽27TREND𝑡 × SECND𝑘 + 𝛽28TREND𝑡 × NEW𝑘,𝑡 + 휀𝑘,𝑡, AZ𝑘,𝑡 = 𝟙[AZ𝑘,𝑡
∗ > 0],  

(1) 

where AZ𝑘,𝑡
∗  denotes a latent variable expressing Azul’s network decisions regarding entry in airport-

pair k at period t. AZ𝑘,𝑡 is a binary response variable accounting for Azul’s airport-pair entry, the 

function 𝟙[. ] is the indicator function for the binary outcome, meaning that entry occurs (AZ𝑘,𝑡 = 1) 

when AZ𝑘,𝑡
∗ > 0. AZ𝑘,𝑡 is assigned with value one only for the year the carrier starts flight operations 

on the route, being equal to zero for the other years. 휀𝑘,𝑡 is the error term, and the 𝛽s are the unknown 

parameters. In Table 1, we provide a presentation of the regressors present in Equation (1). Detailed 

information on each variable is available in the Appendix. We also provide correlation coefficients 

in the Appendix (Table 5). To simplify the exposition, henceforth we omit indexes k and t. 
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Table 1 - Description of model variables7 

 

 
7 “BIL04” denotes Boguslaski, Ito & Lee (2004); “MHB12” denotes Müller, Hüschelrath & Bilotkach (2012). Note that we omit subscripts k and t. See details of each variable in the Appendix. 

Regressor Description Level/Computation Metric BIL04 equivalent MHB12 equivalent

PAX revenue passengers (in 2007) airport-pair count (ln) dense Passengers

DIST, DIST2 distance, distance squared airport-pair miles − Distance, Distance
2

DIST X distance greater than X miles airport-pair mut. exclv. dummies D(distanceX) −

POP population geom. mean (O, D cities) count (ln) meanpop Population

INC GDP per capita geom. mean (O, D cities) BRL deflated (ln) − Income

UNEMPL unemployment rate proxy geom. mean (O, D cities) index [2004=100] − Unempl.

VACATION tourism revenues over GDP geom. mean (O, D cities) proportion max(vacation) −

SECND secondary airport maximum (O, D airports) dummy − Secondary airp.

SLOT slot airport maximum (O, D airports) dummy − Slot restr. airp.

FEE airport landing fees geom. mean (O, D cities) BRL deflated (ln) − PFC

NETWEC number of cities served by Azul sum (O, D cities) count − Netw. economies

MAXAZCIT number of cities served by Azul maximum (O, D airports) year mean max(swcities) −

MINAZCIT number of cities served by Azul minimum (O, D airports) year mean min(swcities −

ZERAZCIT endpoint city not served by Azul maximum (O, D airports) dummy D(swzero) −

AZSHCON Azul’s share of connecting pax airport-pair proportion swshare −

HUB endpoint airport is Azul hub maximum (O, D airports) dummy − −

HUBOTH endpoint airport is Azul’s rival hub maximum (O, D airports) dummy D(hub) −

NONHUB endpoint airport is not a major hub maximum (O, D airports) dummy − Non-HUB

HHI route concentration (in 2007) airport-pair index [0,1] markethhi Route HHI

MAXHHI airport concentration (in 2007) maximum (O, D airports) index [0,1] max(cityhhi) Airp. HHI

MINHHI airport concentration (in 2007) minimum (O, D airports) index [0,1] min(cityhhi) −

LCCCOMP presence of LCCs (in 2007) airport-pair dummy D(lowcost) LCC comp.

BANKR presence of bankrupt airport-pair dummy − Chapter 11 route

MININC GDP per capita minimum (O, D cities) BRL deflated (ln) min(income) −

MAXINC GDP per capita maximum (O, D cities) BRL deflated (ln) max(income) −

EXIST existing route (with respect to 2007) airport-pair dummy − Existing market

NEW new route (with respect to 2007) airport-pair dummy − −

FSCMAJ presence of major FSC (in 2007) airport-pair dummy − −

LCCMAJ presence of major LCC (in 2007) airport-pair dummy − −

REGSMA presence of small regional (in 2007) airport-pair dummy − −

TREND time trend systemwide discrete sequence − −
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Note that in Table 1, we indicate the equivalence of each variable with respect to BIL04 and MHB12. 

For example, in Table 1 we indicate that POP is a covariate in our framework that accounts for the 

size of the population at each endpoint airports’ cities of the route. The equivalent variables in BIL04 

and MHB12 are “meanpop” and “Population”, respectively.8 Also note that in Table 1 more 

variables are listed than those present in Equation (1). This is due to the fact that, later in 4.2, we 

will use the full specifications of BIL04 and MHB12, which involve some additional variables, such 

as DIST, DIST2, MAXAZCIT and MINAZCIT. 

It is important to emphasize, however, that one of the limitations of our approach is the fact that 

BIL04 adopts the city pair concept, unlike MHB12. As the model of Equation (1) assumes the route 

definition as being the airport pair, it is possible that our results are more consistent with MHB12 

than with BIL04. We aimed to compensate for this possible problem by using a proportion of 

regressors slightly more in line with the BIL04 specification.  

3.4. Estimation strategy 

To estimate the unknown parameters of Equation (1), we utilized a probit as the baseline 

estimator, denoted as “PROBIT”. To challenge the results produced by the probit estimator, we also 

employed the Random-Effects Probit Model (“XTPROBIT”), and the Rare Event Logistic 

Regression model (“RELOGIT”). Whereas the first is a probit-based model suitable for panel data 

(Guilkey & Murphy, 1993), the second is a logit-based model suitable when the sample is very 

unbalanced, with one outcome being rarer than the other (King and Zeng, 2001). In our case, we had 

panel data and a rare event of AZ = 1. In all procedures, the standard errors of estimates allowed for 

intragroup correlation (clustered sandwich estimator), using airport pairs as clusters. 

A crucial problem in our empirical framework is the endogeneity of regressors referring to 

strategic industry movements after the entry of Azul Airlines. In particular, the variables PAX, HHI, 

MAXHHI, FSCMAJ, LCCMAJ, LCCCOMP, and REGSMA are the most susceptible to the problem 

of endogeneity bias. To get around this problem, we configured these variables with values from the 

year 2007. As discussed earlier, we use 2007 because it is a year when Azul was not present in the 

industry. Therefore, it is not contaminated by the possible endogenous industry movements in 

response to Azul’s entries. 

 

 

 
8 See BIL04, page 332, and MHB, page 498. 
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4. Results and discussion 

4.1. Estimation results 

Table 2 presents the estimation results of our empirical model of the route entry determinants of 

Azul Airlines. Columns (1), (2), and (3) of Table 2 display the results of the estimations using the 

full sample period, denoted by AZ(FULL). The difference between columns refers to the estimation 

procedure, PROBIT, XTPROBIT, and RELOGIT. The majority of estimates in these columns 

maintain the same sign and statistical significance, suggesting the robustness of the results across 

the different estimators. For example, PAX is positive and statistically significant for the five 

columns. The same is true for the DIST dummies, VACATION, SLOT, and SECND, among several 

other covariates.   

Columns (4) and (5) of Table 2 present the results of the estimates obtained by splitting the sample 

into two sub-samples, considering the periods before and after the 2012 Azul-Trip merger. These 

sub-samples are denoted as AZ (BEF) and AZ (AFT), respectively. Taken together, these results 

reveal crucial strategic movements concerning the carrier’s network decisions and adaptations to the 

Brazilian market during the 2010s. 

Regarding distance, Table 2 shows all the coefficients of the DIST dummies (DIST 300 - DIST 

1500 flip sign from Columns (4) to (5) to be negative and statistically significant. As the base case 

of the dummies is constituted by markets with distances less than 300 miles, we can infer that, after 

the merger, Azul started to give preference to short-haul routes, more in line with the operation of a 

regional airline. Additionally, the coefficient of POP is positive and statistically significant only in 

the period before the merger, but not after the merger. This result reinforces the results of the DIST 

dummies, indicating that the airline started to enter less populated cities across the country. These 

results are consistent with the airline’s fleet planning after the merger, with the 70-seater turboprop 

ATR-72 models, suitable for shorter flight stages owing to their lower speed, constituting 

approximately 30 percent of its fleet; these are also adequate for medium-density markets because 

of their lower seating capacity. Therefore, we have evidence suggesting that the airline has adapted 

its original business model to incorporate the regional segment as one of its main markets served in 

the industry. With the revamped strategic orientation, the carrier was able to conquer many 

monopoly positions in air travel markets across the country, without compromising its notable 

expansion pace and distinctive profitability. 
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Table 2 - Estimation results: Azul entries - full model specification 

 

Notes: Estimation results in Columns (1), (4), and (5) produced by the probit model, denoted as “PROBIT”; estimation results in 

Column (2) produced by the random effects probit model, denoted as “XTPROBIT”; and estimation results in (6) produced by the 

logistic regression in rare events data of King and Zeng (2001), denoted as “RELOGIT”. Standard errors of estimates allow for 

intragroup correlation (clustered sandwich estimator), using airport pairs as clusters. “–” denotes that the variable is dropped. 

“AZ” denotes the probability of Azul’s route entry. “FULL”, “BEF”, and “AFT” denote full sample period, before merger period, 

and after merger period, respectively. P-value representations: ***p<0.01, ** p<0.05, * p<0.10. 

(1) (2) (3) (4) (5)

AZ(FULL) AZ(FULL) AZ(FULL) AZ(BEF) AZ(AFT)

PAX    0.0934***    0.0945***    0.2930***    0.0474**    0.1014***

DIST 300   -0.1786***   -0.1848***   -0.3906***    0.0233   -0.2259***

DIST 600   -0.3738***   -0.3838***   -0.8889***    0.4185***   -0.5398***

DIST 900   -0.4125***   -0.4260***   -1.0392***    0.2951   -0.6269***

DIST 1200   -0.4409***   -0.4585***   -1.1080***    0.7085***   -0.7612***

DIST 1500   -0.7161***   -0.7401***   -1.8576***    0.0068   -1.0773***

POP   -0.0360   -0.0362   -0.1077    0.4606***   -0.0298

INC   -0.0154   -0.0179   -0.0148   -0.2736   -0.0253

UNEMPL    0.0009    0.0006    0.0018    0.0125    0.0010

VACATION    1.2371***    1.2503***    2.7882***   -1.7459*    1.1472***

SECND    0.9649***    0.9995***    2.3349***    1.2303***   -0.6633**

SLOT   -0.0879*   -0.0918*   -0.1974*   -0.7273***   -0.0678

FEE   -0.0048   -0.0035   -0.1118**    0.4046***   -0.0317

NETWEC    0.0336***    0.0346***    0.0694***    0.0475***    0.0287***

ZERAZCIT   -0.5684***   -0.5812***   -1.6383***   -1.3323***   -0.1128***

AZSHCON    0.6092***    0.6217***    1.0738***    0.7072***    0.6104***

HUBOTH    0.0752    0.0729    0.3517***    0.0925    0.1818***

NONHUB   -0.3501***   -0.3565***   -0.8179***   -0.3735   -0.4049***

HHI    0.3015***    0.3069***    0.7669***    0.2118*    0.3327***

MAXHHI   -0.0437   -0.0452    0.0046   -0.2748   -0.0273

MAXHHI × NONHUB    0.2863***    0.2949***    0.6618***    0.1873    0.2849***

FSCMAJ    0.1489**    0.1610**    0.2242    0.4918***    0.0981

LCCMAJ   -0.4761***   -0.4913***   -1.1601***   -0.4239***   -0.5416***

LCCCOMP    0.4955***    0.5208***    1.0141***    0.4204***    0.5321***

BANKR   -0.3038   -0.2986   -0.4231        –   -0.0982

REGSMA    0.2404***    0.2638***    0.3576***    0.2704***    0.2534***

NEW    1.2376***    1.2766***    3.2526***    1.1347***    1.5299***

TREND   -0.0836***   -0.0877***   -0.2335***   -0.0008   -0.1544***

TREND × DIST    0.0002    0.0002    0.0027   -0.0326***    0.0036***

TREND × HUB   -0.0920***   -0.0951***   -0.1989***    0.0930***   -0.0788***

TREND × SECND   -0.2718***   -0.2798***   -0.5968***   -0.6366***   -0.0488

TREND × NEW    0.1032***    0.1058***    0.2296***    0.0111    0.0785***

Estimator PROBIT XTPROBIT RELOGIT PROBIT PROBIT

Airport-Pair Clusters 95,698 95,698 95,698 95,698 95,698

Log likelihood Statistic -5,992 -5,989 -5,546 -585 -5,102

Pseudo R2 Statistic 0.5601 0.5363 0.5929 0.6502 0.5611

AIC Statistic 12,050 12,046 11,160 1,235 10,270

BIC Statistic 12,442 12,450 11,563 1,582 10,646

Nr Observations 1,052,678 1,052,678 1,052,678 382,792 669,886
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Another variable that flips sign from Column (4) to Column (5) of Table 2, is SECND. This result 

indicates that since the merger, the airline has placed less emphasis on new destinations from its 

main hub, the VCP, in a revamped strategy of greater spatial diversification. Indeed, the airline has 

initiated operations at new hubs, namely Belo Horizonte/Confins and Recife Airports. However, the 

result of the TREND × HUB variable points to the fact that the airline has started to enter markets 

where none of the endpoint airports are one of its hubs. 

With respect to HHI, we note that since the merger, the airline has entered many highly 

concentrated routes. The result for this variable also suggests a preference for operating routes with 

fewer carriers (Column 5). The result of the MAXHHI × NONHUB variable, which becomes a 

positive and statistically significant coefficient after the merger (Column 5), is also consistent with 

this result, given that the airline has entered many non-hub airports. Likewise, the sign flipping of 

the ZERAZCIT variable from Columns (4) to (5) suggests a preference for entering new markets. 

The result of the TREND × NEW variable also points to a growing preference for entering new 

markets since the merger. 

Finally, concerning the competition-driven network decisions, the results of the variables 

FSCMAJ and LCCMAJ in Column (4) reveal a preference for the carrier of entering markets already 

operated by the major full-service carrier LATAM and a strategy of avoiding markets operated by 

the major low-cost carrier Gol. However, the results point to a statistical significance of the first 

effect only in the period before the merger. Additionally, flight operations by medium-sized low-

cost carriers and small regional carriers have the effect, ceteris paribus, of attracting Azul’s entry in 

both periods, as seen by the positive and statistically significant coefficients of LCCCOMP and 

REGSMA in Columns (4) and (5).  

We performed equality tests to check whether the coefficients between columns were significantly 

different. At the 95% confidence level, the tests rejected the null hypothesis of equal coefficients in 

all cases. Moreover, the differences between the coefficients of both columns indicate that the 

estimates are attenuated in three quarters of the cases, with 42% of the coefficients flipping their 

sign. In sum, the estimation results of Columns (4) and (5) reveal that Azul engaged in very different 

entry pattern strategies after the 2012 merger event. 

4.2. Entry patterns comparisons  

Once we estimate the empirical results of Equation (1), we investigate whether Azul’s network 

growth observed in the sample period is consistent with the low-cost carrier benchmarks estimated 

by the previous studies. Therefore, we focus on comparing the estimates in Table 2 with the 

estimates by MHB12 and BIL04, who study the cases of JetBlue Airways and Southwest Airlines, 
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respectively. Our ex-ante expectation is that there may be some consistency between Azul entry 

patterns and JetBlue’s, given that they were both founded by Neeleman.  

To carry out a comparative study of Azul’s network decisions with US carriers, we proposed the 

following three-step methodology: 

I. Classify each variable originally estimated by MHB12 and BIL04 as “Significant 

Negative”, “Not Significant”, and “Significant Positive”, according to the sign and 

statistical significance of its estimated coefficient. Gather all the classifications of each 

model to form unique raters computed for each benchmark airline: the “original BIL04 

estimates for Southwest” and the “original MHB12 estimates for JetBlue” raters. 

II. Estimate two modified versions of Equation (1) employing specifications that are strictly 

based on MHB12 and BIL04, i.e., using as many as the same variables as possible. Again, 

classify each variable as “Significant Negative”, “Not Significant”, and “Significant 

Positive”, and gather all the classifications to form unique raters computed for Azul: the 

“BIL04-like estimates for Azul” and the “MHB12-like estimates for Azul” raters. 

III. Using the unique raters computed in Steps I and II, calculate the Kappa Statistic for 

Interrater Agreement (Cohen, 1960) to inspect the consistency of Azul’s entry decisions 

with the entries of the benchmark airlines.  

Cohen’s Kappa statistic is a measure of agreement between raters. In our case, we linked each 

model estimation set to a corresponding rater, by classifying each coefficient into three categories: 

“Significant Negative”, “Not Significant”, and “Significant Positive” (Steps I and II). After 

developing the raters, we computed the Kappa statistic to inspect the consistency between them and 

examine their agreement regarding the entry patterns of Azul and the selected US carriers. 

The Kappa statistic method for two unique raters requires pairwise comparisons of their 

classifications and computing the frequency of agreements between them. The statistic provides a 

synthesis of the comparisons, corrected for the chance agreement case. The statistic ranges from –1 

to +1, with 1 being the case of perfect agreement, zero representing the case where the agreement is 

the same as the one expected by chance, and values lower than zero for where agreement is even 

weaker than expected by chance. Thus, the higher the value of kappa, the stronger is the agreement. 

Landis and Koch (1977, p. 165) propose the following scale for analyzing the agreement strength as 

assessed by the Kappa statistic: below 0.0 (poor), 0.00–0.20 (slight), 0.21–0.40 (fair), 0.41–0.60 

(moderate), 0.61–0.80 (substantial), and 0.81–1.00 (almost perfect). For example, the estimated 

coefficients of Columns (4) and (5) reveal that the two corresponding raters agree in 38.7% of the 

cases, that is, 12 out of 31 coefficients. The agreement expected by chance is 33.0%, which is close 

to the observed interrater agreement. The computed Kappa statistic in this case is 0.0854 (standard 
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error 0.1205), which indicates only “slight” agreement, which is not statistically significant at 5% 

levels. 

Our interpretation of the Kappa  application to the comparison of airline entry pattern estimates 

between Azul and the chosen benchmark carriers is as follows. If the entry patterns between Azul 

and each of the benchmarks are independent, then the Kappa statistic is near zero. In this case, the 

hypothesis of the rater agreement by chance was not rejected. If there is some consistency between 

the network decisions of the carriers under comparison due to, say, business model similarities, then 

the strength of the interrater agreement is relatively high and the chance hypothesis is rejected. 

Accomplishing Step I of our proposed methodology was relatively easy. The corresponding 

estimates are readily accessible in each of the considered empirical studies, namely BIL04 and 

MHB12. As stated by Step I, we labeled this information as the “original BIL04 estimates for 

Southwest” and “original MHB12 estimates for JetBlue”. 

For Step II, however, we needed to develop our own estimates to obtain the “BIL04-like estimates 

for Azul” and “MHB12-like estimates Azul.” Therefore, we ran alternative versions of Equation (1) 

in which we aimed to specify the empirical models to mimic the original specifications of MHB12 

and BIL04 and apply them to our dataset. Equations (2) and (3) present the proposed specifications. 

All regressors contained in Equations (2) and (3) are briefly described in Table 1 and in more detail 

in the Appendix. First, in Equation (2), we present the model specification based on MHB12.9 

AZ𝑘,𝑡
∗,𝑚 = 𝛿1DIST𝑘,𝑡 + 𝛿2DIST SQ𝑘,𝑡 + 𝛿3PAX𝑘,𝑡 + 𝛿4HHI𝑘,𝑡 + 𝛿5LCCCOMP𝑘,𝑡 +

𝛿6BANKR𝑘,𝑡 + 𝛿7NETWEC𝑘,𝑡 + 𝛿8EXIST𝑘,𝑡 + 𝛿9SECND𝑘 + 𝛿10SLOT𝑘 +

𝛿11MAXHHI𝑘,𝑡 + 𝛿12NONHUB𝑘,𝑡 + 𝛿13MAXHHI𝑘,𝑡 × NONHUB𝑘,𝑡 + 𝛿14FEE𝑘,𝑡 +

𝛿15POP𝑘,𝑡 + 𝛿16INC𝑘,𝑡 + 𝛿17UNEMPL𝑘,𝑡 + 휀𝑘,𝑡
𝑚 , AZ𝑘,𝑡 = 𝟙[AZ𝑘,𝑡

∗,𝑚 > 0],  

(2) 

where AZ𝑘,𝑡
∗,𝑚

 and 휀𝑘,𝑡
𝑚 , denote the latent variable and the error term, respectively, with superscript 𝑚 

indicating the model specification based on MHB12. The 𝛿s are unknown parameters. 

In Equation (3), we present the model specification based on BIL04:10 

AZ𝑘,𝑡
∗,𝑏 = 𝛾1PAX𝑘,𝑡 + ∑ 𝛾2,𝑖DIST 𝑖𝑘𝑖 + 𝛾3POP𝑘,𝑡 + 𝛾4VACATION𝑘,𝑡 + 𝛾5MAXINC𝑘,𝑡 +

𝛾6MININC𝑘,𝑡 + 𝛾7MAXAZCIT𝑘,𝑡 + 𝛾8MINAZUCIT𝑘,𝑡 + 𝛾9ZERAZCIT𝑘,𝑡 +

𝛾10AZSHCON𝑘,𝑡 + 𝛾11HUBOTH𝑘,𝑡 + 𝛾12HHI𝑘,𝑡 + 𝛾13MAXHHI𝑘,𝑡 × MEDSMA𝑘,𝑡 +

(3) 

 
9 Müller, Hüschelrath and Bilotkach (2012), Table 2. 
10 Boguslaski, Ito and Lee (2004), p. 334, Table V. 
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𝛾14MAXHHI𝑘,𝑡 × BIG𝑘,𝑡 + 𝛾15MINHHI𝑘,𝑡 + 𝛾16LCCCOMP𝑘,𝑡 + 휀𝑘,𝑡
𝑏 , AZ𝑘,𝑡 =

𝟙[AZ𝑘,𝑡
∗,𝑏 > 0],  

where AZ𝑘,𝑡
∗,𝑏

 and 휀𝑘,𝑡
𝑏 , denote the latent variable and the error term, respectively, with superscript 𝑚 

indicating the model specification based on BIL04. The 𝛾s are unknown parameters.  

Note that Equations (2) and (3) contain versions similar to those proposed by BIL04 and MHB12. 

As can be seen from the description of the regressors (Table 1 and Appendix), the metrics used for 

each variable are not exactly the same as in the original studies because of the availability of 

information and the configuration of the data sets. Additionally, to proceed with the estimations, our 

specifications contain additional controls to the set employed by each study.11 However, as it is an 

application to a different case, we must emphasize that the desired comparability between the 

estimates is far from ideal. We proceeded with the application of the methodology, however, to 

examine not only the level of agreement among the raters but also to assess the strengths and 

weaknesses of our proposed comparative approach. 

We considered the following raters for MHB12 and BIL04:12 

• JB(NS): original MHB12 estimates for JetBlue, all non-stop entries; 

• JB(NS,EXIST): original MHB12 estimates for JetBlue, non-stop entry into existing non-

stop markets; 

• JB(NS,NEW): original MHB12 estimates for JetBlue, non-stop entry into new markets. 

• SW(PER1): original BIL04 estimates for southwest, for entries between 1991 and 2000 

(period 1); 

• SW(PER2): original BIL04 estimates for southwest, for entries between 1995 and 2000 

(period 2). 

Additionally, we set the raters for the Azul entry models (the BIL04-like and MHB12-like 

estimates) as follows (the full empirical results of the estimations of each econometric specification 

that comprise these raters are available in the Appendix). 

• AZ(FULL): all non-stop entries, full sample period; 

• AZ(BEF): all non-stop entries, sample period before the Azul-Trip merger. 

• AZ(AFT): all non-stop entries, sample period after the Azul-Trip merger. 

• AZ(BEF,EXIST): sample period before the Azul-Trip merger; non-stop entry into existing 

markets; 

 
11 The additional controls are TREND, TREND × DIST, TREND × HUB, TREND × SECND, and TREND × NEW.  
12 See details in Müller, Hüschelrath and Bilotkach (2012), Table 2, and Boguslaski, Ito and Lee (2004), p. 334, Table 

V. 
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• AZ(BEF,NEW): sample period before the Azul-Trip merger; non-stop entry into new 

markets; 

• AZ(AFT,EXIST): sample period after the Azul-Trip merger; non-stop entry into existing 

markets; 

• AZ(AFT,NEW): sample period after the Azul-Trip merger; non-stop entry into new 

markets. 

Table 3 presents the results of our empirical methodology for entry pattern comparison between 

Azul on the one hand, and JetBlue and Southwest on the other. It displays the kappa statistic 

measures of agreement between the proposed raters; the grayscale reflects the Landis and Koch 

(1997) intervals for the strength of agreement.  

Table 3 - Comparing Azul with JetBlue and Southwest: Kappa-statistic measure of interrater agreement 

Airline 
JB(NS) JB(NS,EXIST) JB(NS,NEW) SW(PER2) SW(PER1) 

MHB12 MHB12 BIL04 MHB12 BIL04 

  
AZ(BEF) 0.518*** 0.167 0.300 0.209 0.149 

  
AZ(BEF,EXIST) 0.388**  0.352*** 0.300*   0.267*   0.055 

  
AZ(BEF,NEW) 0.273 0.200 0.375*   -0.071 -0.038 

  
AZ(AFT,EXIST) -0.035 0.210 0.070 -0.064 -0.042 

  
AZ(AFT,NEW) -0.113 0.020 -0.125 -0.202 -0.073 

  
AZ(AFT) -0.202 -0.014 -0.302*   -0.064 -0.042 

  
AZ(FULL) -0.041 0.077 -0.310**  -0.045 -0.085 

       

 Landis and Koch (1977) scale for strength of agreement           

             

 below 0.0 0.00–0.20 0.21–0.40 0.41–0.60 0.61–0.80 0.81–1.00  
Poor Slight Fair Moderate Substantial Almost perfect 

 Notes: Kappa measures calculated by comparing the estimated coefficients of Table 6 and Table 7 (available in the Appendix), with, 

respectively, the equivalent estimated coefficients of Boguslaski, Ito & Lee (2004, p. 334, Table V) for Southwest Airlines, and Müller, 

Hüschelrath & Bilotkach (2012, p. 493, Table 2) for JetBlue Airways. “BIL04” denotes Boguslaski, Ito & Lee (2004); “MHB12” 

denotes Müller, Hüschelrath & Bilotkach (2012). “AZ”, “JB”, and “SW” denote Azul Airlines, JetBlue Airways, and Southwest 

Airlines. “FULL”, “BEF”, and “AFT” denote full sample period, before merger period, and after merger period, respectively; 

“EXIST” and “NEW” mean existing routes operated by carriers in the market and new routes, respectively. “NS”, “NS,NEW”, and 

“NS,EXIST” denote the three non-stop entry cases considered by MHB12; “PER1” and “PER2” denote the two periods considered 

by BIL04. Approximate normal test statistics and p-values computed using bootstrapped standard errors with 2,000 replications. 

The null hypothesis is that the agreement between raters is due to chance. P-value representations: ***p<0.01, ** p<0.05, * p<0.10. 

In Table 3, the agreement by chance hypothesis is rejected at the 1% level in the following cases: 

AZ(BEF) vs. JB(NS), AZ(BEF,EXIST) vs. JB(NS), and AZ(BEF,EXIST) vs. JB(NS, EXIST). All 

these results point to a greater consistency between Azul’s entry patterns observed before the merger 

and, more specifically, on existing routes, and JetBlue’s entry patterns in all markets and existing 
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markets cases, as estimated by MHB12. For these cases, Table 3 shows fair-to-moderate but 

statistically significant agreements. However, the agreement among the raters regarding the entry 

on new routes is weaker, given that the Kappa statistics of AZ(BEF,NEW) vs. JB(BEF,NEW) is 

equal to 0.375, but statistically significant only at 10%. This result suggests that due to different 

socioeconomic realities, market entry opportunities in Brazil may also be considerably dissimilar 

from the US case. In addition, there is a full lack of agreement between the raters in the comparisons 

of Azul with Southwest Airlines, as no Kappa statistics for these cases are statistically significant at 

least at 5%. Finally, all estimated Kappa values for comparisons between AZ(AFT) and either of the 

two airline benchmarks are, in many cases, either close to zero or negative, indicating agreements 

by chance or even weaker. 

We can conclude from the results in Table 3 that there is a relatively strong agreement between 

the raters regarding Azul’s entry patterns before the Trip merger, with those of JetBlue, but there is 

none with Southwest Airlines’ entry decisions. What is more, our results suggest that, after the 

merger, the Brazilian airline started to move away from both entry benchmarks to develop its own 

entry patterns in the industry. 

To allow for a better visualization of the results in Table 3, Table 4 presents the matrices with 

detailed results for the case of the two strongest interrater agreements for each airline pair, namely 

AZ(BEF) vs. JB(NS), and AZ(BEF) vs. SW(PER2). For comparison, at the bottom of the table, we 

also present the equivalent post-merger results for Azul, namely AZ(AFT) vs. JB(NS), and AZ(AFT) 

vs. SW(PER2). Note that the agreements between raters are arranged on the diagonals of the 

matrices, highlighted in gray. 

Consistent with the findings of Table 3, we observe in Table 4 that the AZ(BEF) rater presents a 

stronger agreement with JB(NS) than with SW(PER2). In fact, there are 11 variables (out of 16) in 

which JB(NS) agrees with AZ(BEF), an agreement rate of 69%. In contrast, there are 10 variables 

(out of 20) in which the AZ(BEF) and SW(PER2) raters agree⎯a 50% agreement rate. In both cases, 

it is clear the rates fall considerably when assessing the agreements with AZ(AFT): from 69% to 

18% for JB(NS), and from 50% to 20% for SW(PER2). 
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Table 4 - Comparing Azul with JetBlue and Southwest: signs and statistical significance of coefficients 

- strongest interrater agreements of each airline pair (before and after merger) 

 

Notes: Signs and statistical significance of the estimated coefficients extracted from Table 6 and Table 7 (available in the Appendix), and the equivalent estimated coefficients of Boguslaski, Ito & Lee 

(2004, p. 334, Table V) for Southwest Airlines (BIL04), and Müller, Hüschelrath & Bilotkach (2012, p. 493, Table 2) for JetBlue Airways (MHB12). “AZ”, “JB”, and “SW” denote Azul Airlines, JetBlue 

Airways, and Southwest Airlines. “BEF” and “AFT” denote the pre-merger period, and the post-merger period, respectively. “NS” denotes the first non-stop entry case considered by MHB12. “EXIST” 

denotes existing routes already operated by carriers in the market; “PER2” denotes the second period considered by BIL04. 

Airline Airline

Negative Not Positive Negative Not Positive

Significant Significant Significant Significant Significant Significant

Airline Airline

Negative Not Positive Negative Not Positive

Significant Significant Significant Significant Significant Significant

SW(PER2)

AZ(BEF, 

EXIST)

Estimate 

Classification

Negative 

Significant
DIST 1500, ZERAZCIT

DIST 300, DIST 600, 

DIST 900, DIST 1200

Not 

Significant

MAXINC, MININC, 

MAXHHI × BIG
POP

Positive 

Significant

HUBOTH, MAXHHI × 

MEDSMA

MAXAZCIT, 

AZSHCON, HHI, 

MINHHI, LCCCOMP

PAX, VACATION, 

MINAZCIT

SW(PER2)

AZ(BEF, 

EXIST)

Estimate 

Classification

Negative 

Significant

Not 

Significant

Positive 

Significant

DIST 600, DIST 1200, 

AZSHCON, MINHHI, 

LCCCOMP

MAXINC, MININC, 

ZERAZCIT
VACATION

DIST 1500, HUBOTH, 

MAXHHI × MEDSMA

DIST 300, DIST 900, 

MAXAZCIT, HHI

MAXHHI × BIG PAX, POP, MINAZCIT

JB(NS)

AZ(AFT)

Estimate 

Classification

Negative 

Significant

Not 

Significant

Positive 

Significant
MAXHHI × NONHUB

LCCCOMP

NETWEC, EXIST

DIST SQ, BANKR, 

SLOT, MAXHHI, 

UNEMPL

DISTPAX, NONHUB, FEE

HHI, SECND, POP, INC

JB(NS)

AZ(BEF)
Not 

Significant

FEE

Negative 

Significant

Positive 

Significant

Estimate 

Classification

MAXHHI, UNEMPL

PAX, LCCCOMP, 

NONHUB, MAXHHI × 

NONHUB

DIST SQ, SLOT

HHI, INC

DIST, NETWEC, EXIST, 

SECND, POP
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The interrater agreements displayed in Table 4 indicate that both Azul (before the merger) and 

JetBlue view factors such as DIST, NETWEC, EXIST, SECND, and POP as attractors of entry, and 

SLOT as a repellant, suggesting an entry barrier. They also agree on a decreasing marginal effect of 

distance, as dictated by the common negative DIST SQ. Additionally, both airlines do not seem to 

consider PAX, LCCCOMP, NONHUB, and MAXHHI × NONHUB in their network planning. In 

contrast, the interrater analysis suggests that airlines consider different roles for factors such as HHI, 

MAXHHI, INC, UNEMPL, and FEE. This latter result points to the fact that even the young Azul 

had important entry pattern particularities when contrasted with the considered low-cost airline 

benchmarks. 

As seen in the bottom matrices of Table 4, these idiosyncrasies are further accentuated after the 

merger with the regional trip as, in these cases, the interrater agreement becomes much weaker. The 

most important changes in Azul’s entry pattern from the analysis of AZ(BEF) vs. JB(NS) to 

AZ(AFT) vs. JB(NS) are associated with factors such as DIST (becomes negative), POP (becomes 

insignificant), NONHUB (becomes negative), and MAXHHI × NONHUB (becomes positive). 

Other changes are related to PAX, SECND, SLOT, and FEE, but we note that the results of the 

MHB12-like specification are not consistent with the results of our full empirical model of Equation 

(1), displayed in Columns (4) and (5) of Table 2. 

Again, the results allow us to infer that since the 2012 merger, Azul has intensified the adoption 

of an idiosyncratic entry strategy to succeed, probably adapting its business model to the specificities 

of the competitive environment in the Brazilian air transport market.  

5. Conclusion 

This study developed an empirical model of the network construction of Azul Airlines in the 

Brazilian domestic airline industry from 2008 to 2018. Using discrete-choice models with 

specifications built upon the previous literature, along with some case-specific covariates, we aimed 

to identify the market characteristics that influenced the carrier’s route entry probabilities across the 

country in the sample period. We also proposed a novel methodology for comparing our results with 

the findings of the previous literature on empirical determinants of entry by utilizing the kappa 

statistic for interrater agreement. Our main contribution lies in the investigation of the effects of the 

2012 merger with the regional carrier trip airlines and how this event has affected Azul’s route entry 

decisions. We contrasted the estimated entry patterns before and after the merger with the 

benchmarks of JetBlue Airways and Southwest Airlines in the US air transport market. 

Our empirical results indicate a fair-to-moderate but statistically significant agreement between 

the proposed entry pattern raters of JetBlue and Azul before the merger event. This finding is 
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consistent with the fact that the carriers were founded by the same businessperson, David Neeleman. 

We obtained strong statistical evidence of agreement for entries on previously existing routes but 

not on new ones. We found that both Azul (before the merger) and JetBlue considered factors such 

as network economies, population size, and flights from a secondary airport as positive entry drivers. 

In contrast, airport slot restrictions constitute an entry barrier for carriers. We also found no 

consistency between Azul and Southwest Airlines’ entry patterns in the nineties. Finally, our results 

suggest that after the 2012 merger, Azul has moved away from both airline benchmarks to develop 

its idiosyncratic entry patterns. It has become more interested in short-haul routes connecting cities 

with lower populations and more concentrated non-hub airports, with strong elements of regional 

operations to keep expanding and enjoying monopoly positions across the country at the same time. 

This strategic revamp has promoted Azul to a unique situation when compared to other airlines in 

the country and around the world. 

Consistent with its profile of incessant search for growth through adaptation and opportunity-

seeking, Azul has recently reformulated its business model once again, this time with the 

introduction of Airbus A320 neo aircraft in the domestic market. The move shows the carrier’s 

motivation to become the biggest airline in Brazil by capturing a higher market stake on the denser 

routes dominated by its major rivals. Neeleman’s recent statement that Azul is interested in buying 

the LATAM Airlines Group is a clear indication of these ambitions.13 The emergence of a large 

carrier with entry patterns fully adapted to the country’s reality may represent the strengthening of 

competition in the industry, at least while route and airport concentrations do not increase 

considerably. 

The results of this study have important implications for the air transport industry. Numerous 

studies have shown the positive effects of an entry into a new destination on the aviation industry, 

or even to adjacent sectors such as tourism. By better understanding how airlines choose their new 

destinations through the findings of this study, regulators and government can assess if an airport 

needs an investment to serve the demand for a potential entry, leading to better expenditure planning. 

However, the study has crucial limitations regarding its scope and methods. Future research 

should investigate market exit determinants to analyze the whole picture of an airline’s network 

planning strategies over time. This is an important step, as the determinants of exit decisions are 

usually different from the determinants of entry decisions due to many factors such as switching 

costs. By accounting for the exit decisions of the post-merger analysis, it would be possible to 

identify the motivations of the merged entity to drop low-profit routes. In this regard, new studies 

 
13 “Brazil’s Azul eyeing bid for whole of LATAM Airlines, CEO says,” Reuters, November 2, 2021. Available at 

www.reuters.com. 
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could consider the airline’s sunk cost, such as the investments made at the airport, operational 

structure and start-up costs, and advertising and switching costs. With a structural model of 

combined route entry and exit decisions, we believe that future studies could better address issues 

such as the endogeneity of key regressors in our analysis. We also recommend that future studies 

compare carriers before and after the COVID-19 pandemic to inspect how network configuration 

decisions have evolved in the air transport industry across different airline business models. 
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Appendix 

Below is a full list of variables employed in the econometric models, sorting in ascending 

alphabetic order. 

• AZ is a binary response variable indicating the entry of Azul Airlines on a directional airport-

pair in a given year. It is assigned with value one only for the year the carrier starts flight 

operations on the route, being equal to zero for the other years. AZ(FULL), AZ(BEF), and 

AZ(AFT) mean, respectively, the variable considering the full sample period (2008-2018), the 

period before the Azul-Trip merger (2008-2011), and the period after that event (2012-2018). 

AZ(BEF,EXIST) and AZ(AFT,EXIST) denote Azul’s entries on existing routes with respect to 

the 2007 networks of all carriers, respectively before and after the merger. AZ(BEF,NEW) and 

AZ(AFT,NEW) denote Azul’s entries on new routes with respect to the 2007 networks of all 

carriers, respectively before and after the merger. Source: ANAC’s Air Transport Statistical 

Database. 

• AZSHCON is Azul’s market share of passengers, served by connecting flights. Source: 

ANAC’s Air Transport Statistical Database (Cotran - plane change passengers). 

• BANKR is a dummy of route presence of bankrupt carrier Avianca in 2018. The carrier filed 

for reorganization in late 2018 and ceased operations in 2019. Source: ANAC’s Air Transport 

Statistical Database. 

• BIG is a dummy variable taking the value 1 if the more concentrated endpoint airport has one 

million passengers or more. Source: ANAC’s Air Transport Statistical Database. 

• DIST 300, DIST 600, DIST 900, DIST 1200, DIST 1500 are dummy variables that take the 

value one if the great circle distance in miles of the airport-pair is within the intervals [300, 

600), [600, 900), [900, 1200), [1200, 1500), [1500, 3000), respectively, and zero otherwise. The 

base case of the dummies comprises distances in the interval [100,300). Routes with distances 

below 100 miles and above 3000 miles are discarded. Source: ANAC’s Air Transport Statistical 

Database. 
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• DIST is the great circle distance of the airport-pair in 100 miles. Source: ANAC’s Air Transport 

Statistical Database. 

• DIST SQ is the square of DIST. Source: ANAC’s Air Transport Statistical Database. 

• EXIST is a dummy variable to account for the operation of flights in routes that were already 

operated in 2007. Source: ANAC’s Air Transport Statistical Database. 

• FEE is the geometric mean of the landing fees on the endpoint airports (inflation-adjusted local 

currency values, in logarithm). As most medium- and small-sized airports in the country charge 

very similar fees due to same airport categorization, this variable is computed only for routes 

including major hub airports, as defined by variable “BIG”. Source: ANAC’s airport 

regulations. 

• FSCMAJ is a dummy variable to account for the route presence of the major full-service carrier 

LATAM Airlines in 2007. Source: ANAC’s Air Transport Statistical Database. 

• HHI is the Herfindahl-Hirschman index of airport pair concentration, considering the revenue 

passengers of carriers. This figure is computed for 2007. Source: ANAC’s Air Transport 

Statistical Database. 

• HUB is a dummy variable taking the value one if at least one of the endpoint airports is Azul’s 

hub, as stated in “Azul S.A. Form 20-F.” Filed with the United States Securities and Exchange 

Commission, April 30, 2021, available at ri.voeazul.com.br. Source: ANAC’s Air Transport 

Statistical Database. 

• HUBOTH is the maximum share of domestic connecting passengers between the endpoint 

airports of the airport pair, across Azul’s rivals LATAM, Gol and Avianca. Source: ANAC’s 

Air Transport Statistical Database. 

• INC is a proxy for the mean income of consumers. It is equal to the per capita gross domestic 

product’s geometric mean between the origin and destination cities (inflation-adjusted local 

currency values, in logarithm). To compute this variable, we consider the city’s mesoregion 

(grouping of nearby cities). Source: IBGE. 

• LCCCOMP is a dummy variable to account for the route presence of low-cost carriers (LCC) 

Gol, Webjet, and BRA in 2007. Source: ANAC’s Air Transport Statistical Database. 

• LCCMAJ is a dummy variable to account for the route presence of the major low-cost carrier 

Gol Airlines in 2007. Source: ANAC’s Air Transport Statistical Database. 
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• MAXAZCIT is equal to the maximum of the number of airports Azul serves from the endpoint 

airports.  Source: ANAC’s Air Transport Statistical Database. 

• MAXHHI is the maximum Herfindahl-Hirschman index of concentration between the endpoint 

airports of the airport pair, considering the revenue passengers of carriers. This figure is 

computed for 2007. Source: ANAC’s Air Transport Statistical Database.  

• MAXHHI × BIG is an interaction variable expressing the multiplication of MAXHHI and BIG. 

• MAXHHI × MEDSMA is an interaction variable expressing the multiplication of MAXHHI 

and MEDSMA. 

• MAXHHI × NONHUB is an interaction variable expressing the multiplication of MAXHHI 

and NONHUB.  

• MAXINC is the maximum per capita gross domestic product between the origin and destination 

airports’ cities (inflation-adjusted local currency values, in logarithm). To compute this variable, 

we consider the city’s mesoregion (grouping of nearby cities). Source: IBGE. 

• MEDSMA is a dummy variable taking the value one if the less concentrated endpoint airport 

has less than one million passengers. Source: ANAC’s Air Transport Statistical Database. 

• MINAZCIT is equal to the minimum of the number of airports Azul serves from the endpoint 

airports.  Source: ANAC’s Air Transport Statistical Database. 

• MINHHI is the minimum Herfindahl-Hirschman index of concentration between the endpoint 

airports of the airport pair, considering the revenue passengers of carriers. This figure is 

computed for 2007. Source: ANAC’s Air Transport Statistical Database. 

• MININC is the minimum per capita gross domestic product between the origin and destination 

airports’ cities (inflation-adjusted local currency values, in logarithm). To compute this variable, 

we consider the city’s mesoregion (grouping of nearby cities). Source: IBGE. 

• NETWEC is equal to the sum of the number of routes Azul server from the endpoint airports, a 

proxy for the number of potential new connection routes.  Source: ANAC’s Air Transport 

Statistical Database. 

• NEW is a dummy variable to account for the operation of flights in routes that were not operated 

in 2007. Source: ANAC’s Air Transport Statistical Database. 

• NONHUB is a dummy variable taking the value one if at least one of the endpoint airports has 

a national passenger share below 0.25%. Source: ANAC’s Air Transport Statistical Database. 
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• PAX is the total number of revenue passengers carried by all airlines on the airport-pair in 2007 

(in logarithm). Source: ANAC’s Air Transport Statistical Database. 

• POP is the geometric mean of the population of the origin and destination cities in ten thousands 

(in logarithm). To compute this variable, we consider the city’s mesoregion (grouping of nearby 

cities). Source: IBGE. 

• REGSMA is a dummy variable to account for the route presence of small regional carriers in 

2007. Source: ANAC’s Air Transport Statistical Database. 

• SECND is a dummy variable to indicate if one of the endpoints is the secondary airport São 

Paulo/Campinas Airport (VCP), and zero otherwise. Source: ANAC’s Air Transport Statistical 

Database. 

• SLOT is a dummy variable to indicate if one of the endpoints is a slot-constrained airport, and 

zero otherwise. In the sample period the slot-constrained airports are São Paulo/Congonhas 

(CGH), São Paulo/Guarulhos (GRU), Rio de Janeiro/Santos Dumont (SDU), and Belo 

Horizonte/Pampulha (PLU). Source: ANAC’ Slot Coordination webpage 

(www.anac.gov.br/en/air-services/slot-coordination), July 2, 2017, retrieved from 

web.archive.org.  

• TREND is a time trend variable, equal to 1, 2, ..., T, where T is the total number of sample years 

(eleven). 

• TREND × DIST is an interaction variable expressing the multiplication of TREND and DIST. 

• TREND × HUB is an interaction variable expressing the multiplication of TREND and HUB. 

• TREND × NEW is an interaction variable expressing the multiplication of TREND and NEW.  

• TREND × SECND is an interaction variable expressing the multiplication of TREND and 

SECND. 

• UNEMPL is the geometric mean of a proxy for the formal unemployment rate of the origin and 

destination cities. The formal employment rate is computed as the number of workers with 

active employment link on December 31 of each year over the working age population (people 

aged 15 to 64). The formal unemployment rate proxy is one minus the formal employment rate. 

To compute this variable, we consider the city’s mesoregion (grouping of nearby cities). 

Sources: Annual Social Information Report (RAIS Microdata), Ministry of Labor and Social 

Security (Brazil) and IBGE’s 2010 Population Census. 
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• VACATION is is the geometric mean of a proxy for tourism intensity of the origin and 

destination cities’ states. Tourism intensity is defined as the percentage of tourism-related 

activities’ gross revenues with respect to the gross domestic product of the state. Sources: 

IBGE’s Annual Survey of Services, and Gross Domestic Product of Municipalities Publication.  

• ZERAZCIT is a dummy variable taking the value one if Azul serves neither of the endpoint 

airports. Source: ANAC’s Air Transport Statistical Database.
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Table 5 - Correlation matrix of the main model variables 

 

 

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23)

(1) AZ(FULL) 1

(2) PAX 0.19 1

(3) DIST -0.03 -0.07 1

(4) POP 0.05 0.14 -0.16 1

(5) INC 0.04 0.07 -0.28 0.39 1

(6) UNEMPL -0.05 -0.12 0.22 -0.51 -0.85 1

(7) VACATION 0.03 0.04 -0.18 0.30 0.20 -0.22 1

(8) SECND 0.04 0.06 -0.03 0.18 0.08 -0.09 0.04 1

(9) SLOT 0.05 0.16 -0.05 0.29 0.13 -0.17 0.09 -0.01 1

(10) FEE 0.16 0.47 0.00 0.15 0.08 -0.14 0.05 0.14 0.10 1

(11) NETWEC 0.14 0.21 -0.02 0.30 0.20 -0.27 0.15 0.51 0.19 0.30 1

(12) ZERAZCIT -0.05 -0.09 -0.01 -0.18 -0.20 0.22 -0.24 -0.10 -0.11 -0.12 -0.49 1

(13) AZSHCON 0.26 0.29 -0.04 0.09 0.05 -0.07 0.04 0.18 0.04 0.32 0.30 -0.08 1

(14) HUBOTH 0.05 0.12 0.05 0.20 0.12 -0.25 0.04 0.02 0.17 0.14 0.31 -0.41 0.06 1

(15) NONHUB -0.08 -0.20 0.00 -0.21 -0.12 0.24 -0.06 -0.11 -0.19 -0.24 -0.40 0.32 -0.11 -0.44 1

(16) HHI 0.16 0.78 -0.06 0.12 0.06 -0.10 0.03 0.06 0.13 0.37 0.19 -0.09 0.27 0.12 -0.18 1

(17) MAXHHI 0.00 -0.01 0.10 -0.08 -0.09 0.16 -0.09 0.01 -0.01 -0.02 0.03 -0.14 -0.01 0.06 -0.01 0.01 1

(18) FSCMAJ 0.15 0.76 -0.04 0.13 0.07 -0.11 0.04 0.08 0.12 0.49 0.19 -0.07 0.25 0.10 -0.19 0.49 -0.02 1

(19) LCCMAJ 0.13 0.71 -0.05 0.12 0.07 -0.10 0.04 0.08 0.12 0.42 0.17 -0.06 0.23 0.09 -0.15 0.39 -0.02 0.70 1

(20) LCCCOMP 0.16 0.78 -0.05 0.14 0.07 -0.11 0.05 0.08 0.13 0.46 0.20 -0.08 0.27 0.12 -0.18 0.52 -0.02 0.69 0.77 1

(21) BANKR 0.01 0.14 -0.01 0.03 0.02 -0.02 0.02 0.00 0.03 0.11 0.04 -0.02 0.04 0.01 -0.03 0.07 0.00 0.13 0.15 0.13 1

(22) REGSMA 0.11 0.49 -0.10 0.06 0.04 -0.05 0.00 0.05 0.09 0.12 0.11 -0.05 0.19 0.07 -0.09 0.50 0.03 0.19 0.22 0.24 0.03 1

(23) NEW 0.26 -0.01 -0.04 0.07 0.05 -0.07 0.02 0.07 0.07 0.17 0.16 -0.06 0.23 0.08 -0.10 0.06 0.00 -0.01 0.00 -0.01 0.01 -0.01 1

Person correlation coefficient
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Table 6 - Estimation results: Azul entries - model specification based on BIL04 

 

Notes: Estimation results produced by the probit model, denoted as “PROBIT”. Standard errors of estimates allow for intragroup correlation (clustered sandwich estimator), using airport pairs as 

clusters. “–” denotes that the variable is dropped. “AZ” denotes the probability of Azul’s route entry. “FULL”, “BEF”, and “AFT” denote full sample period, before merger period, and after merger 

period, respectively. “EXIST” and “NEW” mean existing routes operated by carriers and new routes, respectively. P-value representations: ***p<0.01, ** p<0.05, * p<0.10. 

(1) (2) (3) (4) (5) (6) (7) (8)

AZ(FULL) AZ(FULL) AZ(BEF) AZ(AFT) AZ(BEF,EXIST) AZ(AFT,EXIST) AZ(BEF,NEW) AZ(AFT,NEW)

PAX    0.0202***    0.0699***    0.0457***    0.0814***    0.0456***    0.0443***        –        –

DIST 300   -0.2395***   -0.2291***   -0.0352   -0.2641***   -0.0913   -0.3170***    0.3248   -0.1367**

DIST 600   -0.4526***   -0.4419***    0.3641**   -0.5858***    0.4000**   -0.6937***    0.4740*   -0.3075***

DIST 900   -0.5831***   -0.4863***    0.2113   -0.6691***    0.2266   -0.7470***    0.4249   -0.4067***

DIST 1200   -0.6111***   -0.4861***    0.6369***   -0.7632***    0.5970**   -0.9595***    0.8276***   -0.3336***

DIST 1500   -0.9967***   -0.7909***    0.0804   -1.1019***    0.1566   -1.2282***        –   -0.7489***

POP    0.0716***   -0.0079    0.3287***   -0.0349    0.3521***   -0.0005    0.2548**   -0.0540**

VACATION   -0.4663**    1.0346***   -1.9936**    1.2132***   -2.3621**    0.9897***    0.3875    0.6483*

MAXINC    0.0463   -0.0093   -0.2713**   -0.0413   -0.3175***   -0.0105    0.1719   -0.0291

MININC    0.0221   -0.0104   -0.2603***   -0.0058   -0.3150***   -0.0482    0.2267    0.0881**

MAXAZCIT    0.0084***    0.0329***    0.0160    0.0285***    0.0093    0.0292***    0.0399    0.0353***

MINAZCIT    0.0706***    0.0521***    0.1196***    0.0536***    0.1197***    0.0602***    0.0556*    0.0494***

ZERAZCIT   -0.5150***   -0.7402***   -1.5411***   -0.1622***   -1.5470***   -0.1332***        –   -0.1836***

AZSHCON    0.7968***    0.5904***    0.5240***    0.5704***    0.4856***    0.4888***    0.6407**    1.1087***

HUBOTH    0.4829***    0.1351***    0.1313    0.2811***    0.1198    0.4250***    0.2962    0.3258***

HHI    0.4855***    0.4362***    0.2330**    0.4687***    0.2260*    0.8809***        –        –

MAXHHI × MEDSMA    0.0477***    0.0507***    0.0370    0.0505***    0.0415*    0.0426***    0.0464    0.0825***

MAXHHI × BIG    0.0727***    0.0286**    0.2267***   -0.0125    0.2537***    0.0219    0.1335**    0.0018

MINHHI    0.5800***    0.7189***    1.1322***    0.6979***    1.2857***    0.9307***    0.4937**    0.2747***

LCCCOMP   -0.0251    0.2731***    0.3272**    0.2588***    0.3861***    0.3127***        –        –

TREND   -0.1293***   -0.0521   -0.1916***    0.0084   -0.1475***    0.0569   -0.0218*

TREND × DIST   -0.0006   -0.0326***    0.0028**   -0.0335***    0.0035**   -0.0130***    0.0001

TREND × HUB   -0.0939***    0.1245***   -0.0810***    0.0988***   -0.0826***    0.1847***   -0.0549***

TREND × SECND   -0.1440***   -0.0580   -0.1318***   -0.0418   -0.2125***   -0.1880   -0.1263***

TREND × NEW    0.2414***    0.2560***    0.2527***        –        –        –        –

Estimator PROBIT PROBIT PROBIT PROBIT PROBIT PROBIT PROBIT PROBIT

Airport-Pair Clusters 95,698 95,698 95,698 95,698 95,698 95,698 95,698 95,698

Log likelihood Statistic -7,887 -6,051 -590 -5,135 -513 -3,223 -155 -4,022

Pseudo R2 Statistic 0.4210 0.5558 0.6473 0.5582 0.6485 0.5254 0.4735 0.3275

AIC Statistic 15,816 12,153 1,232 10,322 1,076 6,496 350 8,088

BIC Statistic 16,065 12,462 1,515 10,619 1,347 6,782 567 8,340

Nr Observations 1,052,678 1,052,678 382,792 669,886 382,792 669,886 382,792 669,886
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Table 7 - Estimation results: Azul entries - model specification based on MHB12 

 

Notes: Estimation results produced by the probit model, denoted as “PROBIT”. Standard errors of estimates allow for intragroup correlation (clustered sandwich estimator), using airport pairs as 

clusters. “–” denotes that the variable is dropped. “AZ” denotes the probability of Azul’s route entry. “FULL”, “BEF”, and “AFT” denote full sample period, before merger period, and after merger 

period, respectively. “EXIST” and “NEW” mean existing routes operated by carriers and new routes, respectively. P-value representations: ***p<0.01, ** p<0.05, * p<0.10..  

(1) (2) (3) (4) (5) (6) (7) (8)

AZ(FULL) AZ(FULL) AZ(BEF) AZ(AFT) AZ(BEF,EXIST) AZ(AFT,EXIST) AZ(BEF,NEW) AZ(AFT,NEW)

DIST   -0.0701***   -0.0268**    0.1917***   -0.0893***    0.1026***   -0.2070***    0.1588***   -0.1207***

DIST SQ    0.0011***    0.0004   -0.0075***    0.0004   -0.0036**    0.0034***   -0.0071**    0.0014***

PAX   -0.0521***   -0.0168***    0.0039   -0.0281***    0.0628***    0.0448***        –        –

HHI    0.4563***   -0.0150   -0.0368    0.0003    0.4052***    1.0801***        –        –

LCCCOMP   -0.1121**    0.0219   -0.0452    0.0032    0.3242**    0.3958***        –        –

BANKR   -0.5377***   -0.2761        –    0.2274        –   -0.1313        –        –

NETWEC    0.0288***    0.0424***    0.0512***    0.0227***    0.0464***    0.0375***    0.0645***    0.0463***

EXIST    1.2470***    2.2667***    2.1207***    2.8875***        –        –        –        –

SECND   -0.8285***    0.9927***    1.6889***   -0.4919*    1.7611***   -0.1735    0.6211*   -0.8424***

SLOT    0.0825**   -0.1973***   -0.8468***   -0.0662   -0.9121***   -0.1524**   -0.0235    0.0087

MAXHHI   -0.1497**   -0.0870   -0.6397*   -0.1587   -0.4185**   -0.2902***   -0.1500    0.0752

NONHUB   -0.5483***   -0.2159***   -0.4241   -0.2929***   -0.7059***   -0.6454***   -0.4629   -0.2808***

MAXHHI × NONHUB    0.3749***    0.2777***    0.3300    0.3345***    0.4246*    0.4896***    0.3202    0.1511*

FEE    0.1444***   -0.0494***    0.2310***   -0.0824***    0.3993***    0.0407    0.2768***    0.1399***

POP    0.0055   -0.0209    0.4820***   -0.0196    0.4504***    0.0350    0.2872***   -0.0628***

INC   -0.0779    0.0483   -0.4640*    0.0073   -0.7090***   -0.0348    0.6542   -0.1022

UNEMPL   -0.0106***   -0.0006    0.0046    0.0030   -0.0115    0.0014    0.0139   -0.0075**

TREND   -0.0616***    0.3478***   -0.3001***    0.3731***   -0.1825***    0.0024   -0.0363***

TREND × DIST   -0.0019*   -0.0346***    0.0072***   -0.0304***    0.0115***   -0.0127    0.0052***

TREND × HUB   -0.1165***    0.1013***   -0.0617***    0.0619   -0.0905***    0.1430**   -0.0777***

TREND × SECND   -0.2831***   -0.6967***   -0.0456   -0.6709***   -0.1793**   -0.4654***   -0.0195

TREND × NEW    0.3330***    0.5645***    0.3913***        –        –        –        –

Estimator PROBIT PROBIT PROBIT PROBIT PROBIT PROBIT PROBIT PROBIT

Airport-Pair Clusters 95,698 95,698 95,698 95,698 95,698 95,698 95,698 95,698

Log likelihood Statistic -8,199 -5,416 -584 -4,289 -564 -3,350 -167 -4,548

Pseudo R2 Statistic 0.3981 0.6024 0.6511 0.6310 0.6133 0.5066 0.4336 0.2397

AIC Statistic 16,435 10,879 1,212 8,624 1,168 6,743 368 9,129

BIC Statistic 16,648 11,152 1,451 8,887 1,385 6,983 552 9,323

Nr Observations 1,052,678 1,052,678 382,792 669,886 382,792 669,886 382,792 669,886


