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Abstract 

This paper develops an econometric model of flight delays to investigate the influence of 

competition and dominance on the incentives of carriers to maintain on-time performance. 

We consider both the route and the airport levels to inspect the local and global effects of 

competition, with a unifying framework to test the hypotheses of 1. airport congestion 

internalization and 2. the market competition-quality relationship in a single econometric 

model. In particular, we examine the impacts of the entry of low cost carriers (LCC) on the 

flight delays of incumbent full service carriers in the Brazilian airline industry. The main 

results indicate a highly significant effect of airport congestion self-internalization in parallel 

with route-level quality competition. Additionally, the potential competition caused by LCC 

presence provokes a global effect that suggests the existence of non-price spillovers of the LCC 

entry to non-entered routes.  
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Introduction 

The present paper develops an empirical model to inspect some of the determinants of flight 

delays and to test their relationships with airline competition and airport dominance. Airline 

delays have become a constant reality in the modern commercial air travel industry globally. 

Passengers are now increasingly familiar with flights having light to moderate delays as part 

of their journey routine. Additionally, episodes of intense flight disruptions due to severe 

weather conditions, strikes or congestion are observed periodically in many places such as the 

Eastern and Western United States, Europe, and China, among others. Flight delays and 

cancellations may not only be stressful to passengers and airlines but are also costly. 

Moreover, there are costs associated with keeping delays to low rates, and therefore, the 

motivations to engage in on-time performance also depend on the economic incentives of 

carriers. 

In 2013, in the UK, a congestion charge was under consideration by the government to 

reduce congestion at both Heathrow and Gatwick to encourage passengers to fly from other 

London airports like Luton and Stansted1. Such an initiative reveals how authorities and 

operators regard managing congestion and its consequent flight disruptions under a scenario 

of no airport expansion in the near future. A strand of the airline literature has addressed this 

issue by inspecting the global effects of airport concentration and dominance on flight delays. 

Following Daniel (1995), the literature has investigated the hypothesis of airport congestion 

internalization, meaning that a dominant airline could naturally internalize the costs 

associated with congestion delays that its aircraft impose without the need of a congestion toll 

– Brueckner (2002), Mayer & Sinai (2003), Daniel & Harback (2008), Rupp (2009),  Zhang & 

Zhang (2006), and Ater (2012).  

In addition, in 2014, a report from the Federal Aviation Administration, noted that the 

absence of competition for many routes might be a source of increased rates of airline flight 

delays and cancellations2. They suggest that competition and service quality may be positively 

related and therefore more frequent and longer flight delays are likely to be observed on less 

                                                 

1 See "Passengers at Heathrow and Gatwick could face congestion charge to encourage use of quieter airports" - 
The Daily Mail Reporter, 2013, Jan 12. 

2 Office of Inspector General – Federal Aviation Administration (2014). Reductions in competition increase 
airline flight delays and cancellations. Audit Report, n. CR-2014-040, April, 23.  



  

 

 

 

 

competitive routes. These findings are in accordance with another strand of the literature on 

airline delays that investigates the hypothesis of the competition-quality relationship. 

Pioneered by Suzuki (2000), this literature has many recent econometric papers investigating 

the local, route level determinants of delays, such as Mazzeo (2003), Rupp, Owens & Plumly 

(2006) and Greenfield (2014). More recently, some articles in this literature have inspected 

the impacts of the entry of low cost carriers (LCCs) on the on-time performance in the market, 

as per Rupp (2008), Castillo-Manzano & Lopez-Valpuesta (2014), Bubalo & Gaggero (2015) 

and Prince & Simon (2015). 

This paper aims to investigate some of the competition-driven incentives of major carriers 

to keep few records of flight delays, both locally in the market – the route level – and globally 

– the airport level. Most papers in the airline delays literature have addressed the subject by 

focusing on one of these levels in an isolated way. We present a unifying framework to test 

both the airport congestion internalization hypothesis and the market competition-quality 

relationship hypothesis in a single econometric model. We examine the role of route and 

airport concentration metrics as key competition determinants of delays. Another 

contribution of the paper lies in the modeling of a dynamic pattern of delays after entry by 

means of a time decomposition into its short-run and long-run effects. 

Our primary interest is on the impacts of the entry of LCCs on the odds and average 

magnitude of flight delays of incumbent FSCs. We investigate the local and global impacts of 

entry and therefore test the effects of LCC presence on the congestion internalization and local 

flight service quality of FSCs. We consider the application to the case of the Brazilian airline 

industry in the period 2002-20133. Our econometric framework addresses the important 

issue of endogeneity of market structure regressors. Since Greenfield (2014), we have that the 

magnitude of bias in the estimation of a flight delay equation may be considerable, and 

therefore, practitioners must implement an instrumental variables approach in such a 

framework. We consider instrumentation all of the market structure variables and discuss the 

effect of not accounting for endogeneity.  

                                                 

3 Huse and Oliveira (2012) investigate the impact of Gol’s entry on the prices of FSCs, with special focus on the 
dynamics and the smoothing effect of product differentiation of price responses. 



  

 

 

 

 

This article is divided as follows: Section 1 presents the conceptual model employed as well 

as the main hypotheses to be tested; Section 2 presents the empirical model development; 

Section 3 presents the econometric model and results; Section 4 performs some robustness 

checks. Finally, the conclusions are presented. 

1. Theoretical framework 

In this section we present our conceptual model along with the main hypotheses 

investigated in the paper. 

1.1. Airport level determinants of delays: congestion internalization 

The emergence of hub-and-spoke networks is a phenomenon of the post-deregulation 

period in the US airline industry that has spread to most airline markets in the world. With the 

formation of hubs, a few carriers a gained dominant position over a set of airports as part of 

their pro-hub-and-spoke network design strategy. The literature has observed that an 

airport’s dominant airline could have stronger incentives to address congestion than smaller 

carriers and would therefore naturally internalize the costs associated with its self-imposed 

flight delays (Daniel, 1995, Brueckner, 2002). This literature focuses on the role of peak/off-

peak allocation of flights and passengers at an airport to inspect the incentives to manage 

congestion and avoid flight delays by dominant carriers. In such situations, congestion tolls 

aimed at mitigating externalities from flight delays would either not be needed or only be 

needed in less dominated airports4. Recent studies include Mayer & Sinai (2003) and Ater 

(2012). Based on this strand of the literature, our first hypothesis in the conceptual model is 

presented below. 

𝐇𝟏. Airport congestion internalization: airport concentration generates higher incentives for 

major airlines to engage in congestion internalization. 

                                                 

4 “One might expect dominant airlines to fully internalize delays of their own aircraft even without congestion 
pricing.” – Daniel (1995, p. 333). Ater (2012) explains that dominant airlines may use the length of their flight 
banks aiming at managing delays: “With wider banks, flights will interfere less with one another, reducing delays” 
(p. 197). 



  

 

 

 

 

Regarding 𝐇𝟏, most of the empirical papers that utilize econometrics find a negative 

relationship between airport concentration and flight delays. Brueckner (2002) presents 

rudimentary evidence based on a sample of 25 US airports in 1999; the results are confirmed 

by Mayer & Sinai (2003) and Ater (2012), who employ panel data disaggregated at the airline-

route-time level for the US airline market of the early 2000s. Santos & Robin (2010) present 

an application to the European airline market from 2000 to 2004 and confirm the findings of 

congestion internalization. However, Daniel & Harback (2008), Rupp (2009) and, to some 

extent, Bilotkach and Lakew (2014), find evidence of no self-internalization and therefore 

suggest a role for congestion pricing in improving economic efficiency. The metrics of 

concentration utilized in these studies are typically either the airport Herfindahl-Hirschman 

index (HHI) or the airport share of the dominant firm. Finally, Molnar (2013) finds that 

internalization depends on the strategic incentives of carriers when balancing the benefits 

from connections and passenger preferred times with the congestion costs, with evidence that 

strategic entry deterrence prevails at hubs.  

1.2. Route level determinants of delays: competition and quality 

Another strand of the literature performs a market level analysis to inspect the 

determinants of flight delays. The market level in the airline industry is usually associated with 

the origin-destination pair – the route level. While the airport internalization literature is 

interested in estimating the global effects of concentration – i.e., concerned with the mean 

airport level – this strand of the literature is interested in estimating the local effects of 

concentration – ie, the market (route) level. 

 At the route level, some recent papers consider on-time performance as one of the key 

indicators of airline service quality. Empirical models of delays are specified with metrics of 

airline competition in the market as regressors, among other factors. Market concentration in 

this sense is therefore usually viewed as a cause of diminished incentives of carriers to 

promote service quality. One of the pioneer studies is Suzuki (2000), who finds that on-time 

performance affects market share on the route through passengers’ experience related to 

delays. The recent econometric literature inverts the analysis and estimates a flight delay 

equation against market (route) concentration – Mazzeo (2003), Rupp, Owens & Plumly 

(2006) and Greenfield (2014). All papers find clear evidence that supports a positive 



  

 

 

 

 

competition-service quality relation. Based on the competition-quality strand of the literature, 

our second hypothesis is therefore as follows. 

𝐇𝟐. Competition-quality relationship: route (market) concentration generates lower 

incentives for major airlines to engage in better service quality with respect to on-time 

performance. 

1.3. A unifying framework: accounting for both the local and global effects of concentration 

A key element of the congestion internalization literature is the focus on the airport level 

determinants of delays. Indeed, when discussing the role of peak/off-peak allocations on the 

incentives to internalize congestion, since Brueckner (2002) this literature has been marked 

by either implicitly or explicitly imposing a route symmetry assumption on the empirical 

modeling. Under route symmetry, all routes out of an airport are virtually equal and therefore 

a “representative route” can be analyzed without loss of generality5. Symmetric routes possess 

the same market structure and thus local route conditions may easily be extrapolated to the 

airport level – a useful device considering that route dominance is not sufficient to guarantee 

airport internalization. Therefore, with symmetry, analyzing either the route or the airport 

level – the local or the global effects – leads to the same conclusions. Not by coincidence, most 

papers in this literature utilize airport concentration dominance without recurring to route 

dominance variables – for example, Brueckner (2002), Mayer & Sinai (2003) and Santos & 

Robin (2010). 

Another issue is related to the competition-quality strand of literature. This literature does 

not consider the possibility of congestion internalization by airport dominant carriers. Indeed, 

none of the previous papers utilize airport level concentration metrics to estimate the overall 

incentives for effective delay management by carriers in their econometric specification – for 

example, Mazzeo (2003), Rupp, Owens & Plumly (2006) and Greenfield (2014). When 

restricting it only to the market level analysis, studies consider that competition-driven flight 

delays are only generated at the local level of the route. Global effects are restricted to nullity, 

                                                 

5 Brueckner (2002, p. 1360) discusses that in his framework, although the number of endpoints is unity, 
additional endpoints can be added to the model by adding a scale factor by recurring to symmetry across routes. 



  

 

 

 

 

a strong assumption that may be unrealistic if we consider the evidence already produced by 

the congestion internalization strand of literature. 

We believe that an econometric model of flight delays does not need the symmetry 

assumption of the congestion internalization literature, and thus, we do not impose it in our 

model. Additionally, we assume the possibility of congestion internalization in parallel of 

service quality management by carriers, which is not assumed by the competition-quality 

literature. With this framework, we therefore have both market and airport concentration 

measures in the same empirical equation, each one with its usual interpretations. So far, 

Mazzeo (2003) and Bubalo & Gaggero (2015) have developed models with both route and 

airport market structure variables. However, although the studies provide controls for both 

the local and global dimensions of airline flight delays6, they do not explicitly discuss the 

hypothesis of airport congestion internalization in their empirical framework. The apparent 

disconnection with the congestion internalization research in both papers clearly weakens the 

possibility of a beneficial interaction of the hypotheses from both the above surveyed strands 

of literature in their analysis of the results. 

1.4. The impact of LCCs on internalization and service quality  

In addition to the implementation of a framework in which both route and airport effects of 

competition may emerge, our primary interest is to estimate the impacts of the entry of low 

cost carriers (LCCs) on the on-time performance of incumbent full service carriers (FSCs). We 

investigate the local and global impacts of entry and therefore test the effects of LCC presence 

on the congestion internalization and flight service quality of FSCs. So far, a few articles in the 

competition-service quality literature have inspected the impacts of LCCs on flight delays. 

Rupp (2008) and Castillo-Manzano & Lopez-Valpuesta (2014) find that LCCs have better on-

time performance than full-service carriers (FSC). Our framework is similar to Bubalo & 

Gaggero (2015) and Prince & Simon (2015), which focus on the competitive responses to 

entry. Based on this recent research, in our framework we propose the following hypothesis 

and its sub-hypotheses: 

                                                 

6 Mazzeo (2003) use route HHI, airport share and a dummy of city-pair monopoly; Bubalo & Gaggero (2015) 
use route market share, airport market share – origin, airport market share – destination. 



  

 

 

 

 

𝐇𝟑. LCC entry and responses in flight delays: The entry of a LCC has impacts on the incentives 

of incumbent carriers to engage in flight delay reduction. 

𝐇𝟑𝐚. LCC entry and responses in airport congestion internalization: LCC entry has impacts on 

the incentives of incumbent carriers to engage in airport congestion internalization. 

𝐇𝟑𝐛. LCC entry and responses in service quality: LCC entry has impacts on the incentives of 

carriers to engage in service quality improvement. 

Note that differently from 𝐇𝟏 and 𝐇𝟐, we do not impose any restriction on the possible 

causality relation of LCC entry and flight delays. So far, this literature has been scarce and with 

conflicting results. Prince and Simon (2015) find evidence that LCC entry increases flight 

delays of incumbent airlines, as it forces a vigorous price competition that induces carriers to 

cut costs – one of such costs being the costs associated with on-time performance 

management. Bubalo & Gaggero (2015) find evidence of the contrary, however.  We therefore 

believe that the impacts of competitive pressure stemming from LCCs on delays lack 

consensus and are still an empirical matter to be further investigated. Additionally, the airport 

congestion internalization literature so far has completely neglected the LCC entry issue. 

The role of our hypotheses above may be better visualized in Figure 1, which presents our 

conceptual model, with the representation of the key drivers of airline flight delays and their 

interactions. As shown in Figure 1, we regard flight delays as being directly incurred by 

airlines but acknowledge the fact that delay is produced by a combination of interactions of 

air transport players – namely, the airline, the airport and the air traffic control (ATC) entities. 

Additionally, external factors such as bad weather, strikes and incidents/accidents must be 

accounted for in any analysis of airline on-time performance. Our focus here is on the airport-

airline interactions through vertical relationships – which may cause congestion 

internalization – and on the market-airline (route) interaction – which may produce service 

quality competition. Our two first hypotheses, 𝐇𝟏 and 𝐇𝟐, are designed to explicitly model 

these local and global effects of competition on flight delays. Our third hypothesis (𝐇𝟑), 

regarding LCC entry, enters the model through both a market-airport-airline relationship and 

a market-airline relationship. 



  

 

 

 

 

 

Figure 1 – Conceptual model of airline delays 

 

2. Empirical model development 

2.1. Application 

We develop an empirical model of flight delays for the Brazilian airline industry. Brazil 

constitutes a case in which airline delays have long been intensively discussed and for which 

congestion tolls have not been implemented so far. In 2008 three of the most important 

airports in the country – Brasília International Airport (BSB), São Paulo/Congonhas (CGH) 

and São Paulo/Guarulhos (GRU) – were among the five most delayed airports in the world7. 

The country was forced to engage in a major effort of flight operations oversight along with a 

regulatory reform regarding punishing long flight delays and managing scarce airport slots to 

                                                 

7 “The World’s most-delayed airports” (Forbes, 2008, Jan 14). 
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avoid problems during the 2014 FIFA World Cup8. Years before, commercial aviation in Brazil 

was fully deregulated in 2001, with the institutional arrangement for airport slot allocation 

first introduced in 2006. So far, only São Paulo's downtown Airport of Congonhas (CGH) has 

been officially designated as a coordinated airport, with strict slot allocation rules dictated by 

the independent authority National Agency of Civil Aviation (ANAC). The allocation 

mechanism is marked by a grandfather rights system of “use-it or lose-it” but with some recent 

pro-new entrants regulation9. The remaining airports are not subject to slot allocation rules. 

The International Airport of São Paulo/Guarulhos (GRU) is currently a schedules facilitated 

airport and participates in the IATA Worldwide Scheduling Guidelines and Conference. 

Since 2001, a number of structural changes have been observed in the industry, examples 

being the birth of the low-cost carriers Gol Airlines in 2001 and Azul Airlines in 2008, the rise 

and fall of a major strategic alliance – the codeshare agreement of Varig and Tam airlines in 

2003-2005 - and more recently, the privatization of key airports since 2012. The major 

changes in the airline market through the 2000s have produced positive and negative aspects. 

Between 2002 and 2010, according to the National Civil Aviation Agency, domestic air 

transport presented a 153% increase in revenue-passenger kilometers and a 52% drop in 

average yields. In parallel, the airlines have notably designed marketing strategies to attract 

consumers such as the emerging new middle class. However, the rapid growth in demand was 

concomitant with the concentration on a few major hubs such as the São Paulo city airports, 

thus causing pressure on the existing airport infrastructure.  

After the bankruptcy of flag carrier Varig, the market structure became rapidly 

concentrated. Market deconcentration had restarted only in 2008, with the entry of LCC Azul 

Airlines, with its smaller-than-average aircraft types through the use of Embraer's E-Jets, 

along with the intense utilization of the underexplored niche of secondary airport operations 

out of São Paulo/Campinas Airport (VCP). Airport congestion caused by infrastructure 

bottlenecks across the country was evident throughout the 2000s and, in particular, in the “air 

blackout” period of 2006-2007 in which more than one-third of the flights were disrupted, and 

                                                 

8 “World cup Brazil flight delays to result in airline fines” (Bloomberg Business, 2014, Jan 23). 

9 For example, in October 2014, 100% of the new slots available at the airport on the occasion were distributed 
to new entrants. See “Brazil ANAC announces slot changes at São Paulo Congonhas Airport, increase from 30 to 32-
33 per hr” (CAPA – Center for Aviation, 29-Sep-2014). 



  

 

 

 

 

later with the rapid acceleration in economic growth from 2010. The lack of airport 

competition and the meager public budget for improvements and expansions meant that 

airport infrastructure scarcity has still been an issue in the country. Since the blackout period, 

however, flight delays and cancellation have not been a recurrent problem for authorities, as 

the proportion of flight disruptions declined considerably. Table 1 permits observing the 

evolution of flight delays and their possible association with airline hubbing (connecting 

passengers) and concentration both at the market (route) and the city (mean airport) level. 

From Table 1 we know that the proportion of delayed flights decreased considerably if we 

compare the beginning of the 2010s with any period of the 2000s. When contrasted with the 

second half of the previous decade, which consists the 2006-2007 air blackout period, flight 

delays decreased by one-third (33.5%). When compared with a less abnormal period such as 

the 2002-2005 years (the bottom line of Table 1), the decrease in the proportion of delayed 

flights was 5.3% on average. Additionally, considering the same comparison it is possible to 

observe an 11% reduction in hubbing – measured by the proportion of connecting passengers 

– and a 4.3% increase in city HHI. This analysis suggests that some airport congestion 

internalization may have occurred. In contrast, market (city-pair) HHI decreased by 0.4%, and 

thus suggesting a slight competition-quality positive relationship. 

Table 1 – Flight delays (arrivals), hubbing (connections), and market concentration in Brazil (2002-2013)10 

 

 

                                                 

10 Source: National Civil Aviation Agency, VRA report, 2002-2013; Infraero, unpublished monthly airport 
movement report, 2002-2013; own calculations. Delayed flights are accounted when a flight is delayed by more 
than fifteen minutes. HHI figures measured using market share of revenue passengers. 

Period

Delayed                   

flights

Connecting 

passengers

(%) (%) City-Pair City

(1) 2002-2005 21.1% 12.5% 0.473 0.332

(2) 2006-2010 30.0% 11.3% 0.527 0.404

(3) 2011-2013 19.9% 11.1% 0.471 0.346

% Var. (3)/(2) -33.5% -1.9% -10.6% -14.3%

% Var. (3)/(1) -5.3% -11.0% -0.4% 4.3%

Herfindhal-Hirschman                

(HHI)



  

 

 

 

 

2.2. Data 

Our dataset consists of a panel of 209 routes in Brazil between January 2002 and December 

2013. The dataset comprises only routes involving the Brazilian state capitals and the 

country’s capital11. In our analysis, a route is defined as a domestic directional city-pair12. Most 

data utilized in this research are publicly available from the National Civil Aviation Agency 

(ANAC). ANAC is responsible for monitoring punctuality and regularity of all domestic flights 

operated by scheduled airlines in Brazil. Detailed information of all scheduled flights in the 

country is available in an online database named Active Scheduled Flight Report (VRA). VRA 

contains flight level data of carrier, airport-pair, flight number, and scheduled and actual 

departure and landing times since 2000. The database also presents the justification code 

reported for each delayed and cancelled flight – bad weather conditions, incidents, etc. A 

limitation of the data set is related to the cases of multiple causes of delay. When a given flight 

is delayed or cancelled due to multiple causes, only the most relevant reason is reported. These 

data are provided by airlines and, on account of the potential strategic incentives in reporting 

reasons for delays, it is subject to inspection and audit by ANAC. For the Brazilian authority, a 

given flight is considered delayed when it arrived 30 or more minutes than the schedule. For 

our purposes in this paper, we use the 15 minutes standard of the U.S. Department of 

Transportation's (DOT) Bureau of Transportation Statistics (BTS), also used by most of the 

literature. 

The original dataset contains information of 10 million flights collected from ANAC’s VRA 

report. We restrict our attention to the subset of the scheduled full-service carriers (FSCs) of 

the database, namely Tam, Varig, Transbrasil and Vasp. Gol and Azul airlines are the low cost 

carriers (LCCs) in the sample. Additionally, we aggregate the dataset to the route-month level 

to inspect the determinants of average flight delays of FSCs. Socio-economic data were 

collected from the Brazilian Institute of Geography and Statistics (IBGE) and the Brazilian 

Central Bank. 

                                                 

11 There are 26 state capitals. We also included the country’s capital, Brasília. In this set of cities, the minimum 
observed population is 230 thousand people. 

12 In our city-pair setting, the airport of Guarulhos International (GRU) and Campinas/Viracopos International 
(VCP) are considered as belonging to São Paulo multiple airports region. Additionally, Confins International 
(CFN) belongs to Belo Horizonte city. 



  

 

 

 

 

2.3. Empirical model 

Equation (1) presents our empirical model of flight delays in the Brazilian airline industry: 

𝑂𝐷𝐷𝑆𝑘𝑡 = 𝛽1𝑛𝑟 𝑓𝑙𝑖𝑔ℎ𝑡𝑠 𝑖𝑛 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 ℎ𝑜𝑢𝑟𝑠𝑘𝑡  

               + 𝛽2𝑛𝑟 𝑓𝑙𝑖𝑔ℎ𝑡𝑠 𝑖𝑛 𝑢𝑛𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 ℎ𝑜𝑢𝑟𝑠𝑘𝑡  

               + 𝛽3𝑝𝑟𝑜𝑝 𝑓𝑙𝑖𝑔ℎ𝑡𝑠 𝑤𝑖𝑡ℎ 𝑏𝑎𝑑 𝑤𝑒𝑎𝑡ℎ𝑒𝑟𝑘𝑡 + 𝛽4𝑝𝑟𝑜𝑝 𝑓𝑙𝑖𝑔ℎ𝑡𝑠 𝑤𝑖𝑡ℎ 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠𝑘𝑡  

               + 𝛽5𝑝𝑟𝑜𝑝 𝑓𝑙𝑖𝑔ℎ𝑡𝑠 ℎ𝑒𝑙𝑑 𝑓𝑜𝑟 𝑙𝑎𝑡𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑘𝑡  

               + 𝛽6 𝑚𝑎𝑥 𝑝𝑟𝑜𝑝 𝑐𝑖𝑡𝑦 𝑑𝑒𝑙𝑎𝑦𝑒𝑑 𝑓𝑙𝑖𝑔ℎ𝑡𝑠𝑘𝑡 + 𝛽7𝑐𝑜𝑑𝑒𝑠ℎ𝑎𝑟𝑒 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑘𝑡  

               + 𝛽8𝐻𝐻𝐼 𝑐𝑖𝑡𝑦‑𝑝𝑎𝑖𝑟𝑘𝑡 + 𝛽9𝐻𝐻𝐼 𝑚𝑎𝑥 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 𝑐𝑖𝑡𝑖𝑒𝑠𝑘𝑡  

               + 𝛽10𝐿𝐶𝐶 𝑝𝑟𝑒𝑠 𝑐𝑖𝑡𝑦 𝑝𝑎𝑖𝑟𝑘𝑡 + 𝛽11𝐿𝐶𝐶 𝑝𝑟𝑒𝑠 𝑚𝑎𝑥 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 𝑐𝑖𝑡𝑖𝑒𝑠𝑘𝑡  

               + 𝛾𝑘 + 𝛾𝑡 + 𝑢𝑘𝑡   

 

 

 

(1) 

Where: 

• 𝑂𝐷𝐷𝑆𝑘𝑡 =  ln [prop delayed flights𝑘𝑡/(1 − prop delayed flights𝑘𝑡)], where 

prop delayed flights𝑘𝑡 is the proportion of FSC flights reported with delays on city-

pair 𝑘 and time 𝑡. Source: National Civil Aviation Agency, VRA Report, with own 

calculations. A delay is computed whenever the difference between the scheduled 

arrival time and the actual arrival time is higher than fifteen minutes. Alternative 

specifications considering departure delays were also utilized to check the robustness 

of the results. 

• 𝑛𝑟 𝑓𝑙𝑖𝑔ℎ𝑡𝑠 𝑖𝑛 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 ℎ𝑜𝑢𝑟𝑠𝑘𝑡 is the average number of daily scheduled flights of 

city-pair 𝑘 and time 𝑡 that operate during congested hours. A “congested hour” is 

defined as a full clock hour characterized by operations of flights (arrivals plus 

departures) in a higher amount than official declared capacity.  Sources: National Civil 



  

 

 

 

 

Aviation Agency, VRA Report and an airport capacity study commissioned by the 

Brazilian government (2010)13. 

• 𝑛𝑟 𝑓𝑙𝑖𝑔ℎ𝑡𝑠 𝑖𝑛 𝑢𝑛𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 ℎ𝑜𝑢𝑟𝑠𝑘𝑡 is the average number of daily scheduled flights 

of city-pair 𝑘 and time 𝑡 that operate in uncongested hours – see the definition of 

“congested hour” above. Source: National Civil Aviation Agency, VRA Report and 

Brazilian government. 

• 𝑝𝑟𝑜𝑝 𝑓𝑙𝑖𝑔ℎ𝑡𝑠 𝑤𝑖𝑡ℎ 𝑏𝑎𝑑 𝑤𝑒𝑎𝑡ℎ𝑒𝑟𝑘𝑡 is the proportion of flights delayed with the 

justification of operations under bad weather conditions of city-pair 𝑘 and time 𝑡. This 

variable has the total number of actual flights on a city-pair as the denominator. 

Source: National Civil Aviation Agency, VRA Report. 

• 𝑝𝑟𝑜𝑝 𝑓𝑙𝑖𝑔ℎ𝑡𝑠 𝑤𝑖𝑡ℎ 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠𝑘𝑡 is the proportion of flights delayed with the 

justification of operational incidents of city-pair 𝑘 and time 𝑡. This variable has the 

total number of actual flights on a city-pair as the denominator. Source: National Civil 

Aviation Agency, VRA Report. 

• 𝑝𝑟𝑜𝑝 𝑓𝑙𝑖𝑔ℎ𝑡𝑠 ℎ𝑒𝑙𝑑 𝑓𝑜𝑟 𝑙𝑎𝑡𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑘𝑡 is the proportion of flights delayed with the 

justification of awaiting passengers or load from another flight of city-pair 𝑘 and time 

𝑡. This variable has the total number of actual flights on a city-pair as the 

denominator. Source: National Civil Aviation Agency, VRA Report. 

• 𝑚𝑎𝑥 𝑝𝑟𝑜𝑝 𝑐𝑖𝑡𝑦 𝑑𝑒𝑙𝑎𝑦𝑒𝑑 𝑓𝑙𝑖𝑔ℎ𝑡𝑠𝑘𝑡 is the maximum proportion of delayed flights 

between the origin and destination endpoint cities of city-pair 𝑘 and time 𝑡. This 

variable has the total number of actual flights on a city as the denominator. This 

variable is designed to capture the overall vulnerability of endpoint cities to shocks in 

the whole network. In particular, with this variable, we aim to control for unobserved 

delay propagation effects that may be caused by exogenous shocks and also account 

for overall system wide conditions, such as during the blackout period. Source: 

National Civil Aviation Agency, VRA Report. 

                                                 

13 “Study of the Air Transport Sector in Brazil” (text in Portuguese) - Brazilian Development Bank, Jan, 25, 2010, 
available at www.bndes.gov.br. 



  

 

 

 

 

• 𝑐𝑜𝑑𝑒𝑠ℎ𝑎𝑟𝑒 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑘𝑡 is a dummy variable to account for the city-pairs and periods 

in which the codeshare agreement between the major carriers TAM and Varig had 

operations. The 2003-2005 codeshare agreement was the only relevant alliance 

among airlines in the sample period. Source: Secretariat for Economic Monitoring 

(SEAE) of the Ministry of Finance. 

• 𝐻𝐻𝐼 𝑐𝑖𝑡𝑦‑𝑝𝑎𝑖𝑟𝑘𝑡 is the Herfindahl-Hirschman index of concentration of revenue 

passengers of city-pair k and time 𝑡. To extract this variable, we use the city-pair level 

market shares of all participating carriers and then calculate the city-pair level 

concentration. This variable aims at capturing the effect on delays of airline market 

dominance, ie. market concentration at the city-pair level. Source: National Civil 

Aviation Agency, Monthly Traffic Report, with own calculations. 

• 𝐻𝐻𝐼 𝑚𝑎𝑥 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 𝑐𝑖𝑡𝑖𝑒𝑠𝑘𝑡 is the maximum Herfindahl-Hirschman index of 

concentration of revenue passengers between endpoint cities of city-pair k and time t. 

In other words, it is a proxy for the concentration measured at the city level. To obtain 

this variable, we use the city-level market shares of all participating carriers to extract 

the city-level concentration. For each city-pair market, we compute the maximum 

city-level concentration between the respective origin and destination cities. This 

variable aims at capturing the effect on delays of overall dominance of the available 

airports of a city. We utilized the maximum city concentration between origin and 

destination as in Boguslaski, Ito and Lee (2004). The justification for using the 

maximum value lies in the fact that it is typically enough to have one of the endpoints 

cities concentrated to start producing effects of dominance over the market14. We also 

experimented with the passenger-weighted average HHI at the two endpoint cities, 

with the final results being robust to this change. Source: National Civil Aviation 

Agency, Monthly Traffic Report, with own calculations. 

• 𝐿𝐶𝐶 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑐𝑖𝑡𝑦 𝑝𝑎𝑖𝑟𝑘𝑡 is a dummy variable to account for the presence of LCCs Gol 

and Azul airlines on city-pair 𝑘 and time 𝑡. Source: National Civil Aviation Agency, 

Traffic Report.  

                                                 

14 Note that our dataset does not contain small cities that are also typically concentrated due to natural 
monopoly characteristics. 



  

 

 

 

 

• 𝐿𝐶𝐶 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑚𝑎𝑥 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 𝑐𝑖𝑡𝑖𝑒𝑠𝑘𝑡 is a dummy variable to account for the presence 

of LCCs Gol and Azul airlines on either origin or destination endpoint cities of city-pair 

𝑘 and time 𝑡. The LCC city presence measure is conceived to work as the usual 

potential competition measure, i.e., presence at an endpoint but not on the route itself 

still provides competitive pressure. Using the maximum operator allows us to 

consider any route presence at the airports of a city, besides being consistent with our 

max city HHI notation. Source: National Civil Aviation Agency, Traffic Report. 

• 𝛽1, … , 𝛽11 are unknown parameters. 

• 𝛾𝑘 and 𝛾𝑡 are, respectively, the city-pair and time fixed effects. 

• 𝑢𝑘𝑡 is the disturbances term, of which we provide more details in 2.4. 

In an alternative specification of (1), we also consider the following regressand: 

• 𝑀𝐼𝑁𝑆𝑘𝑡, the mean difference in minutes between scheduled arrival time and 

actual arrival time of FSCs on city-pair 𝑘 and time 𝑡 - a metric that may be 

negative. We also consider truncated versions of 𝑀𝐼𝑁𝑆𝑘𝑡, considering only 

positive values or figures above a certain threshold delay (for example, 𝑀𝐼𝑁𝑆𝑘𝑡 >

15 meaning delays above fifteen minutes; we also experiment with thirty 

minutes). We also consider the terminology of Greenfield (2014) – 𝑂𝐷𝐷𝑆𝐷𝑘𝑡   and 

𝑀𝐼𝑁𝑆𝐷𝑘𝑡   to measure departure delays in a set of robustness checks.  

One issue to emphasize is that our flight delays equation has variables measured both at the 

city-pair level and the city level. This is consistent with the fact that a flight on a particular 

route most likely will not ending being congested by another flight on that same route but, 

instead, it will most likely be stuck behind a flight on a different route in waiting to take off or 

landing. As all routes from/to a given city share the same terminal control area, it is likely that 

flight delays will be generated not only by the specificities of a route but the general conditions 

of all city airports.  This observation aims at making the distinction clearer between delays 

due to route characteristics and delays affected by overall city characteristics. 

Note that our concentration measures 𝐻𝐻𝐼 𝑐𝑖𝑡𝑦‑𝑝𝑎𝑖𝑟𝑘𝑡  and 𝐻𝐻𝐼 𝑚𝑎𝑥 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 𝑐𝑖𝑡𝑖𝑒𝑠𝑘𝑡 are 

extracted consistently with our definition of market as being the city-pair level instead of the 

airport-pair level. Brueckner, Lee and Singer (2014), provide evidence that city-pairs, instead 



  

 

 

 

 

of airport-pair, are the appropriate market definition in many cases of air transportation 

analyses. By restricting our attention to the city-pair level, however, we are aware that this 

setup may compromise some of the ability to understand interactions among routes at the 

airport-level that could be important in airline response to congestion. In particular, we 

believe that competition in flight frequencies may produce the result of carriers strategically 

moving flights from adjacent airport-pairs to strengthen market position at a given airport 

pair. With our setup, we are not able to observe such strategic movements that may be related 

to market concentration and congestion. We stress that, from the 27 cities present in the 

database, only three are in fact multiple airport regions for scheduled flights: São Paulo, Rio 

de Janeiro and Belo Horizonte. In all cases, the city airports belong to the same terminal control 

area and therefore are subject to the same congestion avoiding approached for the controlled 

airspace. Additionally, because all major carriers in Brazil are usually present in all markets, 

the concentration level measured at the city-pair (or average city) level and at the airport-pair 

(or average airport) level are typically highly correlated. Due to the resulting strong 

multicollinearity, it is not possible to estimate a ceteris paribus effect for variables at both 

airport and city levels. Finally, we interpret our setup with city-pair and city level variables as 

a way to at least partially control for both airport-pair and airport level phenomenon. For 

example, if market concentration increases in a given airport-pair by 10%, we expect the 

market concentration of the city-pair also to increase unless the adjacent airport-pairs have 

concomitant decreases in market concentration. With a 10% increase in airport-pair 

concentration and holding adjacent pairs constant, the overall city-pair concentration would 

obviously increase by less than 10%. Consequently, variables measured at the city-pair level 

will typically contain less sample variability and therefore are more difficult to present 

statistically significant results. We consider this characteristic conservative – and desirable in 

a sense – from the econometric standpoint15. 

A final caveat of our analysis is related to the measurement of flight delays. We are aware of 

the limitations of our procedure of measuring delays strictly relative to flight schedules. 

Particularly in the situation of congested airports and congested periods, carriers may engage 

                                                 

15 We recommend that future research applied to cases with a higher number of multiple airport areas to 
double check the results of the empirical model utilizing a city-pairs database with the results obtained from a 
database disaggregated at the airport-pair level. 



  

 

 

 

 

in strategic movements related to the inclusion of padding of schedules16. Actually, under 

schedule padding, the imbedded buffers may implicitly include both congestion-related 

departure and arrival delays, ultimately resulting in “on time” flights in our dataset17. The way 

the literature so far has addressed the issue of schedule padding follows the procedure of 

Mayer and Sinai (2003). Instead of calculating delays based on the difference between actual 

and scheduled arrival and departure times, the authors utilize the "excess travel time" - the 

difference between actual travel time and the minimum travel time by the carrier on the route. 

This procedure is not immune to criticism, however. Rupp (2009), for example, argues that it 

is highly unlikely that passengers calculate excess travel time in their perceptions of the length 

of flight delays. Here we follow the more traditional approach to delays but recognize that 

accounting for the strategic schedule padding of airlines may be a necessary extension to our 

model. 

From now, we omit indexes 𝑘 and 𝑡. Table 2 presents descriptive statistics of the sample. 

Table 2 - Descriptive statistics 

 

 

                                                 

16 See "Why a six-hour flight now takes seven" (by Scott Mccartney, The Wall Street Journal, Feb. 4, 2010). 

17 See Villemeur et al (2014) for a recent work on the issue. 

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Pearson Correlation

nr flights in congested hours (1) 1.00

nr flights in uncongested hours (2) 0.45 1.00

prop flights with bad weather (3) -0.03 -0.03 1.00

prop flights with incidents (4) -0.04 -0.03 0.02 1.00

prop flights held for late connections (5) -0.04 -0.03 -0.03 0.00 1.00

max prop city delayed flights (6) -0.05 -0.09 0.61 0.08 0.09 1.00

codeshare agreement (7) -0.01 -0.09 -0.22 -0.03 0.03 -0.25 1.00

HHI city-pair (8) -0.21 -0.32 0.11 -0.01 -0.04 0.18 0.02 1.00

HHI max endpoint cities (9) -0.13 -0.13 0.21 -0.03 0.07 0.32 -0.23 0.48 1.00

LCC presence city-pair (10) 0.09 0.16 0.11 -0.05 0.10 0.07 -0.25 -0.40 -0.08 1.00

LCC presence max endpoint cities (11) 0.01 0.02 0.00 -0.05 0.02 0.02 -0.08 -0.03 -0.07 0.11 1.00

ODDS (12) 0.01 -0.02 0.72 0.15 0.11 0.58 -0.12 0.03 0.15 0.05 -0.03 1.00

MINS (13) -0.02 -0.12 0.57 0.12 0.03 0.49 0.08 0.16 0.09 -0.12 -0.04 0.70 1.00

Univariate statistics

Mean 1.68 7.87 0.18 0.01 0.03 0.24 0.18 0.48 0.40 0.90 1.00 -1.38 7.16

Standard Deviation 5.50 11.29 0.13 0.02 0.04 0.10 0.39 0.15 0.07 0.30 0.04 1.03 8.29

Minimum 0.00 0.0 0.00 0.00 0.00 0.05 0.00 0.21 0.23 0.00 0.00 -4.90 -9.80

Maximum 78.84 115.8 0.96 0.3 0.65 0.70 1.00 1.00 1.00 1.00 1.00 4.03 131.91



  

 

 

 

 

2.4. Estimation strategy 

We performed tests of heteroscedasticity and autocorrelation in the residuals. Firstly, the 

Pagan-Hall, White/Koenker and Breusch-Pagan/Godfrey/Cook-Weisberg heteroscedasticity 

tests, with alternative specifications of levels, squares, cross products of regressors and also 

fitted values of the regressand. All these tests strongly rejected the null of homoscedastic 

disturbances. We also implemented a Cumby-Huizinga test of autocorrelation for several 

order specifications, already accounting for heteroscedasticity and endogeneity18). These 

tests indicated the presence of autocorrelation of order 13. We employed the procedure of 

Newey-West to adjust the standard error estimates19.  

With respect to the endogeneity of some of the regressors we know that, consistent with our 

conceptual model, namely, the airline-airport-market relationship, the market structure 

variables are endogenously determined and therefore correlated with the error term. This 

procedure is consistent with Greenfield (2014). We therefore treat the endogeneity of both 

HHI and max city HHI by employing an instrumental variables estimator, the Two-Step 

Feasible Efficient Generalized Method of Moments (2SGMM) with standard errors robust and 

efficient to arbitrary heteroscedasticity and autocorrelation. The setup of the estimator 

employed a Newey-West (Bartlett) kernel and a fixed-effects procedure with seasonality 

controls as discussed before.  We also present a study of the problems of disregarding the 

endogeneity issue, i.e. utilizing Ordinary Least Squares (OLS).  

Our identification strategy considers Hausman-type instruments20 as in Piga & Bachis 

(2006) and Mumbower, Garrow & Higgins (2014). With Hausman-type instruments, we 

utilize concentration levels of other routes to instrument the concentration level of a given 

route. The identifying assumption of the Hausman-type instruments permits exploiting the 

panel structure of the data by assuming that concentration levels are correlated across 

markets but independent of each other’s unobserved shocks. We suspect that common shocks 

may be a reality, however, for routes out of endpoint cities more geographically related. The 

more distant the endpoint cities of two given routes the more realistic would be the use of 

                                                 

18 On the issue of endogeneity, see the discussion below. 

19 As discussed by Baum, Schaffer and Stillman (2007), we utilized the Bartlett kernel function with a 
bandwidth of 𝑇1/3, where 𝑇 = 144. 

20 See Hausman (1996). 



  

 

 

 

 

Hausman-type instruments. Considering this reasoning, we therefore discard nearby cities 

when computing the mean concentration levels of all other routes to instrument the 

concentration level of a given city. We employ three cut-off thresholds, 150, 300 and 500 

kilometers, to produce alternative instruments and challenge the validity and relevance of 

them with statistical tests. First, the validity of the full set of over identifying conditions was 

analyzed by utilizing Hansen J tests. Rejection of the null hypothesis implies that instruments 

are not satisfying the orthogonality conditions, one reason being that they are not truly 

exogenous. For most considered specifications, the Hansen J tests did not reject orthogonality. 

Second, the relevance of the proposed set of instruments was challenged by 

underidentification tests. The test employs the Kleibergen-Paap rk LM statistic (KP). The tests 

led to the rejection of the null of underidentification. Finally, we also tested for weak 

identification. Considering both the Cragg-Donald Wald F statistic and the Kleibergen-Paap rk 

Wald F statistic (Weak CD and Weak KP), we had evidence for rejecting the hypothesis of weak 

instruments. The results of all performed tests on the quality of instruments are reported in 

the tables of Section 3.  

3. Results 

Table 3 presents the estimation results of our empirical model of flight delays in Brazil. We 

consider three different specifications of the regressand: 𝑂𝐷𝐷𝑆, 𝑀𝐼𝑁𝑆, and 𝑀𝐼𝑁𝑆 > 15 

minutes. Columns (1), (3) and (5) contain our baseline models21. 

Some important findings may be obtained from Table 3. First, in all models we have clear 

evidence of airport congestion internalization - our first hypothesis, 𝐇𝟏. Indeed, the results for 

the estimated coefficients of 𝐻𝐻𝐼 𝑚𝑎𝑥 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 𝑐𝑖𝑡𝑖𝑒𝑠 are negative and statistically 

significant in all 𝑂𝐷𝐷𝑆 and 𝑀𝐼𝑁𝑆 specifications. That result confirms the findings of Brueckner 

(2002), Mayer & Sinai (2003), Santos & Robin (2010), and Ater (2012). Second, with respect 

to the competition-quality hypothesis (𝐇𝟐), we also find evidence confirming the expected 

                                                 

21As suggested by one anonymous reviewer, we experimented inserting a variable calculated as the absolute 
difference between the average airport-pair HHI and the city-pair HHI, in order to inspect whether there is 
additional competition through close substitutes. This variable was not statistically significant in most cases and 
results were not changed. We believe that our LCC variables already capture this important effect because the 
operational base of the LCC Azul Airlines is actually São Paulo/Viracopos - the only relevant secondary airport in 
the country. 



  

 

 

 

 

theoretical relationship between delays and route concentration of Mazzeo (2003) and 

Greenfield (2014). Indeed, in all cases the coefficients of 𝐻𝐻𝐼 𝑐𝑖𝑡𝑦‑𝑝𝑎𝑖𝑟𝑘𝑡 are positive and 

statistically significant at least at the 5% level. Third, regarding the impacts of LCC entry – sub-

hypotheses 𝐇𝟑𝐚 and 𝐇𝟑𝐛 – we find some evidence that incumbent FSCs engage in extra 

internalization following entry with respect to the odds of flight delays, but not to the length 

of such delays, as the negative coefficient of 𝑚𝑎𝑥 𝑐𝑖𝑡𝑦 𝐿𝐶𝐶 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 is statistically significant 

in the 𝑂𝐷𝐷𝑆 equation but not in the 𝑀𝐼𝑁𝑆 equations. Local (route) level responses to entry, 

inspected with 𝐿𝐶𝐶 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒, are either not significant or only significant at the 10% level. 

We therefore do not find enough evidence supporting the cost/price cutting hypothesis of 

Prince and Simon (2015). 

Our results suggest the conclusion that self-internalization of airport congestion is observed 

in the Brazilian airline market and is also induced by LCC entry. Following entry, the city share 

of dominant carriers decreases and the consequent drop in concentration tends to provoke a 

reduction in congestion internalization and an increase in flight delays. In this sense, our 

estimates show that the presence of the LCC in a city works as a moderating effect on such 

reduction of congestion internalization. A depeaking strategy may be used as an attempt to 

keep internalizing congestion even with decreasing airport concentration, which may be 

accomplished by reducing the complexity of the hub and spoke operations when competing 

with the LCC. Flights may be allocated in off-peak hours in which the LCC is more attractive to 

leisure passengers – weekends, for example. Other alternative strategies aimed at better on-

time performance are also possible to justify our results. For example, unobserved 

improvements in network and scheduling management of the incumbent after LCC entry may 

induce permanent decreases in flight delays. These results are consistent with an overall 

depeaking movement by FSCs that reduces overall congestion. Entry on a route therefore 

generates potential competition on the other routes of a city, and thus results in a positive 

spillover effect that benefits non-entered routes toward better on-time performance. Note, 

however, that we did not find enough evidence giving support to either a moderating effect or 

an accentuation effect of the LCC entry on the competition-quality relation. We therefore did 

not observe any ceteris paribus effect of the LCC entry on flight delays at the route level, apart 

from the global effect of extra internalization caused by entry on the prevalence of delays.  

 



  

 

 

 

 

Table 3 – Estimation results22 

 

4. Robustness checks 

To assess the validity and sensitivity of our results, we implemented three sets of robustness 

checks. First, we dropped some key competition variables of our empirical model and analyzed 

the changes in the estimates of the remaining variables; second, we employed alternative 

estimators in addition to the 2SGMM utilized so far; and finally, similar to Greenfield (2014), 

                                                 

22 Panel data of route-months for FSC carriers. Results produced by the two-step feasible efficient generalized 
method of moments estimator (2SGMM); statistics robust and efficient to arbitrary heteroscedasticity and 
autocorrelation; P-value representations: ***p<0.01, ** p<0.05, * p<0.10; results generated by alternative 
estimators presented in the Appendix. 

 
   (1)    (2)    (3)    (4)    (5)    (6) 

 ODDS  ODDS  MINS MINS MINS > 15 MINS > 15 

nr flights in congested hours 0.0043** 0.0043* 0.0801* 0.0827* 0.0778* 0.0810* 

 [0.002] [0.002] [0.041] [0.043] [0.041] [0.043] 

nr flights in uncongested hours 0.0046** 0.0044** 0.0450 0.0571 0.0451 0.0589 

 [0.002] [0.002] [0.028] [0.036] [0.028] [0.036] 

prop flights with bad weather 4.7119*** 4.7145*** 31.7681*** 31.6405*** 31.1137*** 30.9731*** 

 [0.092] [0.093] [1.247] [1.258] [1.254] [1.265] 

prop flights with incidents 6.2157*** 6.1807*** 50.0528*** 50.5325*** 48.4526*** 48.9637*** 

 [0.394] [0.395] [4.998] [5.005] [5.112] [5.115] 

prop flights held for late connections 2.4272*** 2.4781*** 22.0148*** 19.5129*** 21.9546*** 19.3264*** 

 [0.275] [0.257] [5.062] [4.440] [5.125] [4.490] 

max prop city delayed flights 1.5564*** 1.5460*** 12.5036*** 12.6235*** 12.3394*** 12.4196*** 

 [0.225] [0.228] [2.893] [2.894] [2.928] [2.933] 

codeshare agreement 0.0207 0.0081 1.1053 1.3287 1.0843 1.3123 

 [0.061] [0.061] [0.897] [0.866] [0.901] [0.870] 

HHI city-pair 0.8050** 0.8192** 30.6290*** 30.0753*** 31.9607*** 31.5567*** 

 [0.373] [0.410] [8.617] [8.853] [8.778] [9.041] 

HHI max endpoint cities -1.4772*** -1.5144*** -19.4278*** -19.1045*** -20.9849*** -20.6986*** 

 [0.523] [0.527] [6.583] [6.514] [6.684] [6.615] 

LCC presence city-pair  -0.0412  2.4889*  2.7123* 

  [0.072]  [1.464]  [1.497] 

LCC presence max endpoint cities  -0.4234**  -0.4861  -0.8230 

  [0.179]  [1.683]  [1.706] 

city-pair fixed effects     yes     yes     yes     yes     yes     yes 

time fixed effects     yes     yes     yes     yes     yes     yes 

Adj. R-Squared 0.6801 0.6800 0.4546 0.4629 0.4374 0.4456 

RMSE Statistic 0.5889 0.5890 6.1713 6.1244 6.2268 6.1813 

F Statistic 79.005 76.576 26.525 26.879 25.221 25.561 

KP Statistic 154.2698 139.2305 30.7876 29.8792 30.7876 29.8792 

KP P-Value 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

J Statistic 3.1132 3.2199 0.2161 0.6514 0.1447 0.5509 

J P-Value 0.3745 0.3589 0.6420 0.4196 0.7036 0.4579 

Weak CD Statistic 91.0127 83.4722 35.3711 37.2128 35.3711 37.2128 

Weak KP Statistic 34.0972 30.5968 10.3854 10.0724 10.3854 10.0724 

Nr Observations 19419 19419 19590 19590 19590 19590 

 



  

 

 

 

 

we experimented with changing the concept of flight delays to inspect departure delays.  The 

results are presented in Table 4 below and in the Appendix. 

Table 4 - Robustness checks23 

 

The results in Table 4 show that our baseline model of 𝑂𝐷𝐷𝑆 is robust to most changes in 

specifications. In particular, regarding the hypothesis of self-internalization, the results are 

notably insensitive to the omission of the competition variables. However, a comparison of the 

results among specifications (1) and (3) shows that 𝐻𝐻𝐼 𝑐𝑖𝑡𝑦‑𝑝𝑎𝑖𝑟𝑘𝑡 and 

𝐻𝐻𝐼 𝑚𝑎𝑥 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 𝑐𝑖𝑡𝑖𝑒𝑠𝑘𝑡  are positively correlated and that omission of the second damages 

                                                 

23 Panel data of route-month for FSC carriers. Results produced by the two-step feasible efficient generalized 
method of moments estimator (2SGMM); statistics robust and efficient to arbitrary heteroskedasticity and 
autocorrelation; P-value representations: ***p<0.01, ** p<0.05, * p<0.10; results generated by alternative 
estimators presented in the Appendix. 

 
   (1)    (2)    (3)    (4)    (5)    (6)    (7) 

 ODDS  ODDS  ODDS ODDS ODDS ODDS ODDS 

nr flights in congested hours 0.0043* 0.0018 0.0041* 0.0025 -0.0012 0.0005 
 

 [0.002] [0.002] [0.002] [0.002] [0.003] [0.001]  

nr flights in uncongested hours 0.0044** 0.0014 0.0043** 0.0025* 0.0007   

 [0.002] [0.001] [0.002] [0.001] [0.003]   

prop flights with bad weather 4.7145*** 4.7425*** 4.7310*** 4.7321***  4.7179*** 4.7174*** 

 [0.093] [0.090] [0.091] [0.089]  [0.093] [0.093] 

prop flights with incidents 6.1807*** 6.1236*** 6.2785*** 6.3240***  6.2095*** 6.2073*** 

 [0.397] [0.395] [0.392] [0.390]  [0.397] [0.397] 

prop flights held for late connections 2.4781*** 2.3054*** 2.4142*** 2.3678***  2.4464*** 2.4483*** 

 [0.258] [0.237] [0.256] [0.234]  [0.253] [0.253] 

max prop city delayed flights 1.5460*** 1.6669*** 1.5449*** 1.6411***  1.5606*** 1.5602*** 

 [0.229] [0.216] [0.220] [0.208]  [0.225] [0.225] 

codeshare agreement 0.0081 0.0173 0.0099 0.0094 -0.0508 0.0054 0.0047 

 [0.061] [0.060] [0.060] [0.056] [0.072] [0.061] [0.061] 

HHI city-pair 0.8192**  0.4247  0.6137 0.6491* 0.6535* 

 [0.412]  [0.383]  [0.528] [0.350] [0.350] 

HHI max endpoint cities -1.5144*** -1.1549**   -1.1624* -1.4143*** -1.4195*** 

 [0.529] [0.482]   [0.683] [0.527] [0.528] 

LCC presence city-pair -0.0412 -0.1616*** -0.0519 -0.1171*** 0.0155 -0.0669 -0.0660 

 [0.072] [0.037] [0.070] [0.031] [0.095] [0.062] [0.061] 

LCC presence max endpoint cities -0.4234** -0.4571** -0.2296* -0.1664 -0.4942** -0.4257** -0.4259** 

 [0.180] [0.179] [0.135] [0.134] [0.216] [0.180] [0.180] 

city-pair fixed effects     yes     yes     yes     yes     yes     yes     yes 

time fixed effects     yes     yes     yes     yes     yes     yes     yes 

Adj. R-Squared 0.6800 0.6888 0.6863 0.6902 0.5036 0.6827 0.6826 

RMSE Statistic 0.5890 0.5808 0.5831 0.5787 0.7335 0.5865 0.5865 

F Statistic 76.576 78.720 78.241 79.564 44.064 77.509 77.705 

KP Statistic 139.2305 320.8510 154.0443  136.5746 186.7474 186.8591 

KP P-Value 0.0001 0.0001 0.0001  0.0001 0.0001 0.0001 

J Statistic 3.2199 7.6572 11.9420  12.9733 3.0992 3.1458 

J P-Value 0.3589 0.1050 0.0178  0.0047 0.3766 0.3697 

Weak CD Statistic 83.4722 346.6552 85.5286  83.5622 112.2317 112.2612 

Weak KP Statistic 30.5968 76.1872 33.8077  29.9950 40.6805 40.7102 

Nr Observations 19419 19419 19419 19590 19419 19419 19419 

 



  

 

 

 

 

the proper estimation of the first24. This is indicative of a negative bias when omitting 

𝐻𝐻𝐼 𝑚𝑎𝑥 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 𝑐𝑖𝑡𝑖𝑒𝑠𝑘𝑡. As the previous literature has not completely specified the 

empirical models regarding both these local and global indicators of concentration, we 

conclude that any subspecification related to concentration variables may cause relevant 

problems of inconsistent estimation and inference towards an unpleasant false negative. The 

same issue arises when comparing specification (1) and (5), and with 

𝐿𝐶𝐶 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑚𝑎𝑥 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 𝑐𝑖𝑡𝑖𝑒𝑠𝑘𝑡 in specification (4).  

The main results are not changed when we perform the additional robustness checks 

presented in the Appendix. In particular, the results do not change either when we run an LIML 

estimator or when we use departure delays instead of arrival delays in the regressand. The 

results are altered considerably, however, when employing the OLS estimator, as the 

estimated signs of 𝐻𝐻𝐼 change. We therefore recommend employing instrumental variables 

estimation to address endogeneity and its associated problems, as noted by Greenfield (2014). 

Conclusion 

The present paper estimated both the local and global effects of competition on the on-time 

performance of incumbent full-service carriers (FSCs) in the Brazilian airline market. By 

developing econometric models of the odds and the length of flight delays, we tested important 

relationships found in the recent literature as the hypotheses of airport congestion self-

internalization and the market competition-service quality association. We also estimated the 

impacts of actual and potential competition with low cost carriers (LCC) in the industry.  

Our results suggested that self-internalization of airport congestion was observed in the 

Brazilian airline market in the sample period. Additionally, it was also induced by LCC entry, 

with the effect of potential competition causing a positive spillover effect that benefitted non-

entered routes towards better on-time performance. However, we only find that LCC entry 

benefits consumers by lowering the prevalence of flight delays, with no evidence found of any 

impact on the duration of such delays. We also find enough evidence supporting the 

                                                 

24 The Pearson correlation coefficient between the two variables was 0.48. See Table 2. 



  

 

 

 

 

competition-quality hypothesis in which lower concentration at the route level would enhance 

airline quality and thus forcing flight delays to decline.  

The interpretation of the combined results of the local and global effects of competitive 

conditions on the behavior of incumbent carriers regarding punctuality is as follows. In an 

apparent paradox, carriers tend to self-internalize congestion when their airport dominance 

is increased but also tend to maintain some self-internalization when this dominance is 

challenged by the entry of a LCC carrier. These movements are not contradictory as they may 

be an outcome of strategic scheduling adjustments provoked by the anticipation of vigorous 

price competition with a newcomer with a different business model. Our combined local and 

global effects therefore indicate that while quality competition regarding punctuality is 

observed locally in the market, there is evidence from our case study that the emergence and 

growth of LCCs may be an extra factor that enhances the on-time performance in the airline 

industry. However, there is certainly a need to consider applications of this model in other 

regions and also to consider further distinction among the different classes of LCCs around the 

world. 
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Appendix 

Table 5 – Estimation results – LIML25 

 

 

 

                                                 

25 Panel data of route-month for FSC carriers. Results produced by the limited-information maximum 
likelihood estimator (LIML); statistics robust and efficient to arbitrary heteroscedasticity and autocorrelation; P-
value representations: ***p<0.01, ** p<0.05, * p<0.10. 

 
   (1)    (2)    (3)    (4)    (5)    (6) 

 ODDS  ODDS  MINS MINS MINS > 15 MINS > 15 

nr flights in congested hours 0.0044** 0.0044** 0.0783* 0.0801* 0.0762* 0.0786* 

 [0.002] [0.002] [0.041] [0.044] [0.042] [0.044] 

nr flights in uncongested hours 0.0048*** 0.0047** 0.0451 0.0577 0.0452 0.0593 

 [0.002] [0.002] [0.028] [0.036] [0.029] [0.037] 

prop flights with bad weather 4.7164*** 4.7187*** 31.7594*** 31.6361*** 31.1087*** 30.9740*** 

 [0.093] [0.093] [1.252] [1.265] [1.259] [1.272] 

prop flights with incidents 6.2312*** 6.1954*** 50.0084*** 50.5468*** 48.4208*** 48.9890*** 

 [0.396] [0.398] [5.023] [5.038] [5.136] [5.147] 

prop flights held for late connections 2.4470*** 2.4863*** 22.2647*** 20.1416*** 22.1367*** 19.8834*** 

 [0.277] [0.259] [5.114] [4.530] [5.170] [4.573] 

max prop city delayed flights 1.5319*** 1.5204*** 12.4009*** 12.3875*** 12.2663*** 12.2162*** 

 [0.226] [0.229] [2.916] [2.932] [2.948] [2.968] 

codeshare agreement 0.0142 0.0024 1.1304 1.3488 1.1062 1.3325 

 [0.062] [0.061] [0.904] [0.871] [0.908] [0.876] 

HHI city-pair 0.8503** 0.8699** 30.4896*** 30.0829*** 31.8034*** 31.5141*** 

 [0.381] [0.419] [8.722] [9.045] [8.874] [9.220] 

HHI max endpoint cities -1.4278*** -1.4609*** -19.3882*** -19.1038*** -20.9400*** -20.6756*** 

 [0.530] [0.534] [6.622] [6.571] [6.721] [6.670] 

LCC presence city-pair  -0.0280  2.4401  2.6603* 

  [0.073]  [1.498]  [1.529] 

LCC presence max endpoint cities  -0.4092**  -0.5135  -0.8489 

  [0.180]  [1.694]  [1.718] 

city-pair fixed effects     yes     yes     yes     yes     yes     yes 

time fixed effects     yes     yes     yes     yes     yes     yes 

Adj. R-Squared 0.6795 0.6792 0.4557 0.4629 0.4387 0.4460 

RMSE Statistic 0.5894 0.5897 6.1650 6.1243 6.2194 6.1792 

F Statistic 78.859 76.443 26.479 26.753 25.189 25.448 

KP Statistic 154.2698 139.2305 30.7876 29.8792 30.7876 29.8792 

KP P-Value 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

J Statistic 3.1100 3.2160 0.2155 0.6474 0.1444 0.5478 

J P-Value 0.3750 0.3595 0.6425 0.4210 0.7039 0.4592 

Weak CD Statistic 91.0127 83.4722 35.3711 37.2128 35.3711 37.2128 

Weak KP Statistic 34.0972 30.5968 10.3854 10.0724 10.3854 10.0724 

Nr Observations 19419 19419 19590 19590 19590 19590 

 



  

 

 

 

 

Table 6 – Estimation results – OLS26 

 

 

                                                 

26 Panel data of route-month for FSC carriers. Results produced by the Ordinary Least Squares estimator; 
statistics robust and efficient to arbitrary heteroscedasticity and autocorrelation; P-value representations: 
***p<0.01, ** p<0.05, * p<0.10. 

 
   (1)    (2)    (3)    (4)    (5)    (6) 

 ODDS  ODDS  MINS MINS MINS > 15 MINS > 15 

nr flights in congested hours 0.0022 0.0016 0.0109 0.0064 0.0054 0.0010 

 [0.002] [0.002] [0.033] [0.033] [0.032] [0.032] 

nr flights in uncongested hours 0.0027* 0.0014 -0.0225* -0.0334** -0.0257* -0.0365*** 

 [0.001] [0.001] [0.013] [0.014] [0.013] [0.014] 

prop flights with bad weather 4.7278*** 4.7385*** 32.1218*** 32.2104*** 31.4908*** 31.5801*** 

 [0.089] [0.089] [1.219] [1.215] [1.215] [1.211] 

prop flights with incidents 6.3678*** 6.3062*** 50.1286*** 49.6672*** 48.5654*** 48.0825*** 

 [0.392] [0.392] [4.495] [4.528] [4.544] [4.577] 

prop flights held for late connections 2.2006*** 2.3032*** 13.6712*** 14.5348*** 13.1073*** 13.9719*** 

 [0.239] [0.234] [3.805] [3.827] [3.813] [3.835] 

max prop city delayed flights 1.6748*** 1.6945*** 16.6318*** 16.8295*** 16.7074*** 16.8936*** 

 [0.207] [0.206] [2.241] [2.232] [2.237] [2.228] 

codeshare agreement 0.0292 0.0132 1.7922** 1.6754** 1.8006** 1.6769** 

 [0.055] [0.056] [0.777] [0.784] [0.775] [0.781] 

HHI city-pair -0.2086*** -0.3126*** 3.3899*** 2.4833*** 3.2958*** 2.3998*** 

 [0.064] [0.068] [0.627] [0.696] [0.630] [0.698] 

HHI max endpoint cities 0.1614 0.1057 -2.4930* -2.9092** -2.9449** -3.3809** 

 [0.201] [0.196] [1.384] [1.378] [1.391] [1.384] 

LCC presence city-pair  -0.1636***  -1.4236***  -1.4081*** 

  [0.033]  [0.351]  [0.350] 

LCC presence max endpoint cities  -0.1793  -0.6575  -0.9704 

  [0.137]  [1.340]  [1.343] 

city-pair fixed effects     yes     yes     yes     yes     yes     yes 

time fixed effects     yes     yes     yes     yes     yes     yes 

Adj. R-Squared 0.6900 0.6911 0.5599 0.5611 0.5554 0.5566 

RMSE Statistic 0.5789 0.5779 5.5438 5.5362 5.5353 5.5278 

F Statistic 79.059 79.180 32.814 33.438 32.745 33.437 

Nr Observations 19590 19590 19590 19590 19590 19590 

 



  

 

 

 

 

Table 7 – Estimation results – departures27 

 

                                                 

27 Panel data of route-month for FSC carriers. Results produced by the two-step feasible efficient generalized 
method of moments estimator (2SGMM); statistics robust and efficient to arbitrary heteroscedasticity and 
autocorrelation; P-value representations: ***p<0.01, ** p<0.05, * p<0.10. 

 
   (1)    (2)    (3)    (4)    (5)    (6) 

 ODDSD  ODDSD  MINSD MINSD MINSD > 15 MINSD > 15 

nr flights in congested hours 0.0043* 0.0040* 0.0826** 0.0888** 0.0813** 0.0881** 

 [0.002] [0.002] [0.040] [0.042] [0.040] [0.043] 

nr flights in uncongested hours 0.0045** 0.0037* 0.0600** 0.0755** 0.0602** 0.0766** 

 [0.002] [0.002] [0.027] [0.035] [0.027] [0.035] 

prop flights with bad weather 4.3423*** 4.3484*** 29.7430*** 29.6021*** 28.7533*** 28.6096*** 

 [0.095] [0.094] [1.254] [1.270] [1.264] [1.280] 

prop flights with incidents 5.6676*** 5.6213*** 45.6334*** 46.2999*** 42.9812*** 43.6799*** 

 [0.394] [0.393] [4.931] [5.006] [4.976] [5.055] 

prop flights held for late connections 2.3209*** 2.4174*** 23.4195*** 21.5465*** 23.3561*** 21.4804*** 

 [0.271] [0.251] [5.145] [4.646] [5.176] [4.672] 

max prop city delayed flights 1.4907*** 1.4948*** 11.9374*** 11.8084*** 11.6938*** 11.5244*** 

 [0.227] [0.228] [2.818] [2.847] [2.827] [2.861] 

codeshare agreement -0.0053 -0.0198 1.0378 1.2075 0.9230 1.0905 

 [0.065] [0.065] [0.891] [0.868] [0.892] [0.870] 

HHI city-pair 0.5076 0.4762 28.9275*** 29.7925*** 29.3745*** 30.4138*** 

 [0.372] [0.409] [8.107] [8.538] [8.185] [8.643] 

HHI max endpoint cities -1.3852*** -1.4100*** -20.8782*** -20.7291*** -22.7749*** -22.6519*** 

 [0.522] [0.524] [6.312] [6.345] [6.377] [6.417] 

LCC presence city-pair  -0.1175*  2.3697*  2.4545* 

  [0.071]  [1.413]  [1.431] 

LCC presence max endpoint cities  -0.2771  -0.0895  -0.2276 

  [0.183]  [1.618]  [1.634] 

city-pair fixed effects     yes     yes     yes     yes     yes     yes 

time fixed effects     yes     yes     yes     yes     yes     yes 

Adj. R-Squared 0.6793 0.6801 0.4566 0.4538 0.4438 0.4398 

RMSE Statistic 0.5920 0.5913 6.0336 6.0497 6.0633 6.0858 

F Statistic 85.521 83.803 25.775 25.397 24.419 23.988 

KP Statistic 154.5998 139.3322 31.7590 30.4940 31.7590 30.4940 

KP P-Value 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

J Statistic 2.6633 3.2374 0.1031 0.0008 0.1819 0.0167 

J P-Value 0.4465 0.3564 0.7482 0.9769 0.6698 0.8973 

Weak CD Statistic 91.3573 82.9942 36.8354 38.0770 36.8354 38.0770 

Weak KP Statistic 34.2059 30.5977 10.7250 10.2840 10.7250 10.2840 

Nr Observations 19408 19408 19579 19579 19579 19579 

 


