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Abstract 

This paper empirically investigates the main drivers of airline network concentration in an 

air transport market subject to rapid growth. We consider the Brazilian air transport 

industry of the 2000s, in which network concentration rapidly increased and was followed 

by a period of massive flight delays and cancelations, which resulted in the “big blackout” 

of 2006-2007. We develop an econometric model of network concentration, accounting for 

demand, cost and competition variables that may affect the propensity of carriers to 

concentrate flights and passenger connections on a few airports of a network. The main 

focus of the paper is on the relation between networks leading to the problems of the 

blackout episode. We investigate the dynamic pattern of the evolution of concentration 

before and after the abnormal period of operations and find that concentration began to 

rise at least six quarters before, and persisted at a high level until two quarters after the 

blackout – and then plunged steeply toward the end of the decade. We believe that our 

analysis contributes to an improved understanding of the behavior of air transport 

systems subject to network concentration and congestion. With respect to methodology, 

we suggest and employ the use of alternative measures of network concentration to check 

the robustness and validity of our results. 
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Hirschman Index (HHI). 
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Introduction 

 
The Brazilian air transport industry has been subject to major transformations since 

Brazil’s economic deregulation of the 1990s and early 2000s. One of the major changes in 

the short run was increased competition and a prominent clustering of flights and 

passenger connections at few major airports. The traffic share of the two busiest Brazilian 

domestic airports (São Paulo/Congonhas Airport (CGH) and Brasília Airport (BSB)) 

quickly grew and reached their peaks in 2005. In that year, the two airports accounted for 

one quarter of all travelers and two-thirds of all flight connections in Brazil as the 

domestic market moved toward a hub-and-spoke design. This movement clearly strained 

the country’s underfunded airport and air traffic control infrastructure (Costa, Lohmann & 

Oliveira, 2010). 

That strain meant the airport system in Brazil became more vulnerable and prone to flight 

disruptions. The “big blackout” of air transport in Brazil was a period of massive flight 

disruptions from October 2006 to July 2007 that was caused by a series of operational 

slowdowns by air traffic controllers (who were engaging in work-to-rule procedures) and 

aggravated by the spatial congestion of the air transport system. During this period, flight 

disruptions (delays and cancellations) more than doubled, affecting 391.4 thousand flights 

in 2007 compared with 162.3 thousand early in 2004 (National Agency for Civil Aviation, 

ANAC - see details in Table 1). 

This paper’s primary focus is on the investigation of the hypothesis of network 

concentration leading up to the “big blackout”. We suspect that network concentration 

increased in the first years of the decade just before the “big blackout” and that 

contributed to the emergence and worsening of the major disruptions observed in 2006-

2007. Indeed, with higher network concentration, airlines certainly operate tighter 

schedules at major airports that can lead to increased risk of flight disruptions, 
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particularly under the slowdown in flight management created by air traffic controller’s 

quasi-strike behavior.  

We develop an empirical model of network concentration for the air transport industry in 

Brazil. To our best knowledge, this model is the first to insert network concentration 

indexes as dependent variables in an econometric model. In so doing, we employ the 

Network Concentration Gini Index (𝑵𝑪𝑮𝑰𝑵𝑰) and also develop a Network Concentration 

Herfindhal-Hirschman Index (𝑵𝑪𝑯𝑯𝑰) for our empirical analysis. We estimate the effects of 

demand, cost and competition drivers on network concentration and focus on the effects 

of the “big blackout”, in particular. Finally, we make use of sequential quarter dummy 

variables to estimate the dynamic pattern of the evolution of network concentration 

before and after the “big blackout”, using a regression-based event study. We believe our 

analysis will improve the understanding of the behavior of air transport systems that are 

subject to concentration and congestion. This paper also contributes to a growing body of 

literature that addresses the impact of regulatory policy measures on (de)concentration of 

airline/airport networks, particularly in emerging economies (Daramola, & Jaja, 2011; Koo 

& Lohmann, 2013; Shaw, Lu, Chen, & Zhou, 2009).  

This paper is structured as follows: In Section 1, we discuss the evolution of the airline 

network in Brazil and the circumstances surrounding the “big blackout”. In Section 2, we 

discuss the most commonly used metrics of airline network concentration and present our 

developments of the 𝑵𝑪𝑮𝑰𝑵𝑰  and 𝑵𝑪𝑯𝑯𝑰  indexes. Section 3 contains our empirical 

modeling and the presentation of estimation results. The final section contains concluding 

remarks. 
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1. Network concentration in Brazilian air transport and the 

“big blackout”  

1.1 Liberalization, competition and network concentration 

Liberalization of air transport in Brazil has its origins in the early 1990s with the abolition 

of the governmental policy known as the “Integrated System of Regional Air Transport” 

(Sistema Integrado de Transporte Aéreo Regional - SITAR) and its strict structure of five 

regional monopolies and four national airlines. Abolishing SITAR meant eliminating the 

controls over the sector’s strategic variables, such as price and flight frequency settings 

and network design; a new airline market began to form in the country that included the 

entry of small newcomers and low-cost carriers, which led to increased competition. 

Consistent with international experience with economic liberalization, instituting the free-

market policy generated indisputable gains for the Brazilian airline industry, such as lower 

prices, increased operational efficiency, and more competitive companies, which led to 

marked industry expansion. According to the regulator, the average yield dropped by 

56%, demand increased by 234% and the average load factor increased by 21.5% 

following deregulation (source: National Agency for Civil Aviation's Air Transport 

Yearbook, 2012). 

However, such liberalization was not accompanied by investment in the infrastructure 

components that constitute the air transport supply chain, such as airports and the air 

traffic control sector. Furthermore, all the country’s major airports continued to be 

operated by the state-owned company INFRAERO until 2012, when a process of airport 

privatization was initiated. São Paulo/Guarulhos International (GRU), São 

Paulo/Campinas (VCP) and Brasília (BSB) airports were privatized in 2012. Subsequently, 

in 2013, operations at Rio de Janeiro/Galeão (GIG) and Belo Horizonte/Confins (CFN) 

were also transferred to the private sector. Air traffic control remained under the 

supervision of the Department of Airspace Control (Departamento de Controle do Espaço 
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Aéreo – DECEA), which is a government body under the Ministry of Defense. Due to factors 

such as lack of both flexibility and innovation in airport management and public 

underinvestment over the years – as reported in 2006 by the Brazilian Federal Court of 

Accounts (whose acronym in Portuguese is TCU), a fiscal watchdog of the federal 

government – there was a clear mismatch between the fast-growing domestic airline 

market and slow-motion change in airport infrastructure (Tribunal de Contas da União 

(2006) AC-2420-50/06-P. “Relatório de levantamento de auditoria [Audit Report]”, 

available at www.contas.tcu.gov.br.). On the problems of infrastructure underinvestment 

in Brazil, a Morgan Stanley report stated, “Infrastructure spending in Brazil has been in a 

declining trend over the past 40 years, averaging 5.4% of GDP during the 1970s, 3.6% in 

the 1980s, 2.3% in the 1990s, and 2.1% in the 2000s.” (Morgan Stanley Blue Paper, May 5, 

2010, p. 3). 

In parallel with these developments, other factors associated with a more liberalized 

environment began to emerge, such as a strong decline in the number of destinations 

served by carriers across the country and an increased concentration of flight frequencies 

at major nodes of the airline network structure (Koo & Lohmann, 2013). Indeed, after 

deregulation, the dynamics of a more competitive market led established carriers to 

increasingly pursue cost efficiency, and the quickest way of accomplishing this goal was to 

target the creation of economies of traffic density and scope, with a particular focus on the 

densest routes of the country. Therefore, since the early 2000s, the network design of 

Brazilian airlines evolved rapidly toward higher concentrations of flights and passenger 

connections in a small number of major airports. Figure 1 presents the evolution of the 

traffic share of the two busiest Brazilian domestic airports, CGH in São Paulo and BSB in 

Brasília. Investigating the long-run progression of these airports reveals a fundamental 

feature of the evolution of airline networks in the country as these two airports witnessed 

a sizeable increase in their shares of domestic flights, domestic passengers and domestic 

connecting passengers beginning in the early 1990s and continuing until immediately 
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before the “big blackout” (2003-2005). Figure 1 shows that, during the 2003-2005 period, 

these two airports together accounted for 21% of all domestic flights (up from 15% in 

1991-1993), 32% of all domestic passengers (up from 16% in 1991-1993) and a notable 

63% of all domestic connecting passengers (up from 10% in 1991-1993). 

Possible explanations for the network concentration movement toward São Paulo 

Congonhas and Brasília airports, as observed in Figure 1, may be associated with two 

factors: (a) natural competitive advantage and (b) entry barriers. First, it is clear that 

geographic location and economic factors make the two airports attractive and strategic 

places for the operations of any major airline in the country. São Paulo, which has the 

largest GDP and population in Brazil, and Brasília is central to the country’s territory, in 

addition to being the political capital that generates a significant amount of traffic from/to 

all states of the country. Second, following the airline economic deregulation of the late 

1990s, all carriers enjoyed the freedom not only to set prices according to market 

conditions but also to adjust their network design with flight expansions and reallocations 

across the country. The major competing airlines, i.e. Varig, TAM and Gol, used São Paulo 

Congonhas and Brasília as important parts of their strategic business plans to grow, block 

the entry of newcomers and so reap increased profits. Entry barriers (via slot controls at 

these airports) were clearly established during that period. As an illustration of this 

approach, Gol acquired Varig in 2007 mainly to obtain airport slots and strengthen its 

position at São Paulo Congonhas. The result of these strategic decisions since deregulation 

was that the two busiest airports were highly congested (Costa, Lohmann & Oliveira, 

2010), which caused a severe strain on the country’s underfunded airport infrastructure.  

1.2 The “big blackout” period 

The “big blackout” of air transport in Brazil, also known as the “Apagão Aéreo” or simply 

“Air Blackout” – an allusion to the energy blackout of the country in 2001 – was a period of 

massive flight disruptions that lasted from October 2006 until July 2007. Structurally, the 
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“big blackout” was a clear result of the pressure from the rapid growth in airline demand 

on an underfunded airport and air traffic control infrastructure and was expressed in a 

wave of flight delays and cancellations. The situation in the “big blackout” period was 

exacerbated by an operational slowdown by air traffic controllers – a quasi-strike 

implemented mainly with work-to-rule actions (i.e. workers following very strict and 

minor rules in order to intentionally slow the ordinary flow of work) – after the crash of 

Gol Flight 1907 in September 2006. Most of the disruptions produced by the “big blackout” 

came to an end soon after a second tragic event – the crash of TAM Flight 3054 at São 

Paulo Congonhas, on July 17, 2007. After this second crash, aviation authorities imposed 

operating restrictions on this airport, such as a perimeter rule and a ban on flight 

connection operations by carriers (Lohmann & Trischler, 2012). Simultaneously, the air 

traffic controllers work action ultimately ceased, and airline, airport and air traffic control 

operations returned to normal across the nation. 

1.3 Evolution of flight delays in the 2000s 

Table 1 presents the evolution of flight disruptions in Brazil from 2004 to 2010 and shows 

that flight disruptions more than doubled during the “big blackout” period – reaching 

391.4 thousand flights in 2007 from 162.3 thousand early in 2004. In the worst year 

delays and cancellations affected 137.8 and 253.6 thousand flights, respectively, and 

nearly 60% of domestic flights were disrupted. 

 [insert Table 1 about here] 

Later in the decade, flight disruptions began to decline, and by 2010, they reach lower 

levels than experienced before the “big blackout”, at 24.4% of all flights. Currently, after 

the privatization of major airports of the country, flight disruptions are no longer reported 

as a major problem by air transport authorities. For example, during the 2014 FIFA World 
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Cup, when the Brazilian airport system was used by more than 16 million passengers and 

approximately one million international tourists over a period lasting less than two 

months, traffic delays affected approximately 7% of flights (Source: National Secretary for 

Civil Aviation www.aviacaocivil.gov.br and Ministry of Tourism www.turismo.gov.br and 

www.copa2014.gov.br). This declining trend of flight disruptions makes the “big blackout” 

episode more intriguing and relevant for investigating the concentration and major 

disruption of air transport systems subject to rapid market growth and service re-

organisations. 

2. Assessing airline network concentration 

2.1 Measures of airline network concentration 

Economic measures of concentration are widely employed to indicate how a particular 

market is structured. The airline market is no exception, and these measures may be used 

provided they have certain desirable features (Reynolds-Feighan, 1998 and 2001; Hall, 

1967), including one-dimensionality and independence from the size of the studied 

market. 

The primary advantage of concentrated hub-spoke (HS) networks is that they enable 

airlines to lower travel costs and increase connectivity (Pels, 2001). Airlines can decrease 

travel costs by gathering a group of passengers with the same origin and different 

destinations on flights that feed the hub. These passengers are redistributed onto different 

connecting flights, leaving the hub for their final destinations. Connectivity is increased 

within a hub because there is a concentration of landings and take-offs during certain time 

periods, which are commonly referred to as hub waves (Alderighi, 2005). A hub airport 

can increase airline productivity, but it can also have detrimental effects on the overall air 

transport industry. The first negative aspect is that a hub grants a degree of monopoly 

power over airport facilities to airlines operating hubs (Nero, 1999). In addition, 
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operational overload at times during the day is common at hubs, which increases delays 

and passenger dissatisfaction, creates barriers to new entry at the airport, and increases 

air traffic congestion, which can overload air traffic controllers and compromise safety 

(Button, 2002, Hoffman, 2000, Rodrigue, 2006). 

The Network Concentration Gini Index (𝑵𝑪𝑮𝑰𝑵𝑰) 

An index for measuring air transport concentration frequently found in the literature is 

the Gini index (Burghouwt, Hakfoort & van Eck, 2003, Huber, 2009, Koo and Lohmann, 

2013, Reynolds-Feighan, 2001). This index first appeared in the research of Corrado Gini, 

the statistician who sought to express a distribution's difference from uniformity (Gini, 

1913). Widely used to measure wealth and income inequality, it was only introduced into 

the analysis of air transport by Reynolds-Feighan (1998), who used it to measure spatial 

concentration in U.S. airline networks. The Gini index can be defined as: 

𝐺𝑖𝑛𝑖 = |1 −
1

𝑁
∑(𝜎𝑌𝑖 + 𝜎𝑌𝑖−1)

𝑛

𝑖=1

|, 
( 1 ) 

where n is the number of airports in the network and σYi is the cumulative traffic from the 

busiest airport to the i-th busiest airport. One advantage of the Gini index is that it is not 

sensitive to population distribution and responds well to changes in any segment of the 

population, whether the changes occur in small, medium or large airports (Huber, 2009). 

Calculating the Gini index does not require a homogeneous or well-defined market. 

However, according to Burghouwt, Hakfoort & van Eck (2003), the Gini index exhibits two 

flaws that contradict the characteristics cited by Hall (1967): it does not range from zero 

to one and depends on the size of the studied market. To eliminate these problems, these 

authors introduced a new index, the Network Concentration Index (here labeled as 
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𝑵𝑪𝑮𝑰𝑵𝑰), which is calculated as the Gini index divided by the maximum Gini possible for 

that network: 

 

𝑵𝑪𝑮𝑰𝑵𝑰 =
𝐺𝑖𝑛𝑖

𝐺𝑚𝑎𝑥
, 

( 2 ) 

where 𝐺𝑚𝑎𝑥 is the maximum Gini index in a network, given by 𝐺𝑚𝑎𝑥 = 1 − 2 𝑛⁄ , with 𝑛 

being the number of airports in the network.  

The Network Concentration HHI Index (𝑵𝑪𝑯𝑯𝑰) 

The other index commonly used to measure air transport concentration is the Herfindahl-

Hirschman Index (HHI) (Huber, 2009, Martín & Voltes-Dorta, 2009, Papatheodorou, 2009, 

Reynolds-Feighan, 2001, Lijesen, 2004). Orris Herfindahl and Albert Hirschman developed 

the index in 1950 (Hirschman, 1964) to measure the concentration of companies in a 

particular industry. This index is widely used in antitrust cases for assessing the 

competitive effects of a proposed merger. In air transport, it has been used as a substitute 

for or competitor of the Gini index when assessing network concentration. The HHI is 

given by: 

𝐻𝐻𝐼 = ∑ 𝑠𝑖
2

𝑁

𝑖=1

, 
( 3 ) 

where 𝑠𝑖  is the participation in the traffic of airport i. The primary limitation of the HHI is 

that it depends on the size of the analyzed market. It is also regarded as a poor measure 

because it can be derived from the parameters of the underlying size distribution 

(Reynolds-Feighan, 2001).  
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One advantage of this index is that it is only sensitive to changes in the extremes of the 

studied population, which is ideal when studying hubs, for example. Applying this line of 

reasoning, Costa, Lohmann & Oliveira (2010 and 2011) used the HHI to develop a model to 

measure the number of theoretical hubs in a given network. In this paper, we build upon 

that framework to develop a network concentration version of the HHI in a similar fashion 

as Burghouwt, Hakfoort & van Eck (2003), considering two airport categories: hub 

airports and spoke airports. By definition, a hub is an airport through which all originating 

traffic is channeled. For our purposes, we have set a constraint that, in a pure hub-and-

spoke system, 50% of all landings and takeoffs are concentrated in hubs, whereas the 

remaining 50% of landings and take-offs are distributed among the spokes. Therefore, by 

applying the HHI to the network of h hubs and (n-h) spokes, the following is obtained: 

𝐻𝐻𝐼(𝑛, ℎ) = ∑ 𝑠ℎ𝑖
2

ℎ

𝑖=1

+ ∑ 𝑠𝑠𝑗
2

𝑛−ℎ

𝑗=1

, 
( 4 ) 

where 𝑛 is the number of airports in the network, ℎ is the number of hub airports in the 

network, 𝑠ℎ𝑖 is the traffic participation of a hub airport and 𝑠𝑠𝑖  is the traffic participation of 

a spoke airport. By imposing symmetry and using the definition of hub, the following is 

obtained: 

𝐻𝐻𝐼 = 𝐻𝐻𝐼(𝑛, ℎ) = (
0.5

𝑛
)

2

ℎ + (
0.5

𝑛 − ℎ
)

2

(𝑛 − ℎ) 

𝐻𝐻𝐼(𝑛, ℎ) =
0.25𝑛

ℎ(𝑛 − ℎ)
 

( 5 ) 

 Given the maximum concentration, there would be only one hub with 50% of the traffic, 

and in this situation, we have: 

𝐻𝐻𝐼𝑚𝑎𝑥 =  𝐻𝐻𝐼(1, ℎ) =
0.25𝑛

(𝑛 − 1)
 

( 6 ) 
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With Equation (6), it is possible to reach a network concentration index similar to that 

proposed by Burghouwt, Hakfoort & van Eck (2003) – here labeled as 𝑵𝑪𝑮𝑰𝑵𝑰. We suggest 

the following implementation, combining Equations (5) and (6) to produce a Network 

Concentration HHI, 𝑵𝑪𝑯𝑯𝑰: 

𝑁𝐶𝐻𝐻𝐼 =
𝐻𝐻𝐼

𝐻𝐻𝐼𝑚𝑎𝑥
, 

( 7 ) 

where 𝐻𝐻𝐼𝑚𝑎𝑥 is the maximum HHI index in a network, given by 𝐻𝐻𝐼𝑚𝑎𝑥 = 0.25𝑛/(𝑛 −

1), with 𝑛 being the number of airports in the network. The 𝑵𝑪𝑯𝑯𝑰 has the desirable 

property of ranging between 0 and 1, with the theoretical maximum 1 representing a full 

hub-and-spoke system. 

2.2 Analysis of the evolution of network concentration using 𝑵𝑪𝑮𝑰𝑵𝑰 and 𝑵𝑪𝑯𝑯𝑰 

Using Brazilian airport data, we present an analysis of the evolution of network 

concentration in the country by employing the above described network concentration 

indexes, namely the 𝑵𝑪𝑮𝑰𝑵𝑰 and the 𝑵𝑪𝑯𝑯𝑰. The dataset used to compare the indexes 

derives from the INFRAERO monthly air passenger statistic report, which is available at 

the operator’s website. This database contains the records of all passengers who passed 

through the 61 largest airports operated by INFRAERO during the 2002–2008 period. In 

comparison, network concentration was relatively high in the early 2000s (average 

𝑵𝑪𝑮𝑰𝑵𝑰 and 𝑵𝑪𝑯𝑯𝑰 of 0.801 and 0.591, respectively, in 2000) and relatively low in the late 

2000s (average 𝑵𝑪𝑮𝑰𝑵𝑰 and 𝑵𝑪𝑯𝑯𝑰 of 0.794 and 0.435, respectively, in 2010). For this 

reason and to better illustrate the potential effects of the "blackout" event (the focus of 

attention here), we restrict our attention Figure 2 presents the monthly values of each 

network concentration index. 

[insert Figure 2 about here] 
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Analyzing the two indexes calculated over this period, we note a visual correlation. Indeed, 

both indexes display a similar time pattern, with an increase from 2002 to 2004, reaching 

a peak in 2005 (a year before the “big blackout”), and systematically declining toward the 

end of the decade. The evolution analysis shown in Figure 2 is thus consistent with our 

comments on the role of these two airports in Section 1. The Pearson correlation 

coefficient between the two monthly coefficients was high at 0.762, which means that both 

indexes may be reasonably used as proxies for assessing changes in network 

concentration quite interchangeably. However, there is a difference between them that 

justifies looking at both separately. This difference is in the sample distribution of each 

index. In our sample the 𝑵𝑪𝑮𝑰𝑵𝑰 always presented a larger mean and a lower standard 

deviation than the 𝑵𝑪𝑯𝑯𝑰: the computed monthly mean of 𝑵𝑪𝑮𝑰𝑵𝑰 was 0.800 with a 

standard deviation of 0.007, whereas the monthly mean of 𝑵𝑪𝑯𝑯𝑰 was 0.527 with a 

standard deviation of 0.053. This fact indicates that the higher sample variability of the 

𝑵𝑪𝑯𝑯𝑰 might allow this index to present higher goodness-of-fit statistics when employed 

as a dependent variable in a regression analysis.  Notwithstanding this characteristic, we 

decided not to discard the results for the Gini index, however, because we believe they 

constitute a way of confronting the results for the HHI and therefore to provide an 

important check of robustness of our analysis. 

3. Empirical model of network concentration determinants 

The chief objective of this section is to investigate the determinants of airline network 

concentration in Brazil in the 2000s with an econometric model of the concentration 

indexes 𝑵𝑪𝑮𝑰𝑵𝑰 and 𝑵𝑪𝑯𝑯𝑰. From our previous description of the period, we suspect that 

concentration may have increased in the first years of the decade just before the “big 

blackout” and may thus have contributed to the emergence and worsening of the major 

disruptions observed in 2006-2007. Moreover, the de-concentration movement of the 

post-blackout period may have played a role in producing the decline observed in the 
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number of flight disruptions since 2008. Some of the reasons for the move toward 

deconcentration in the late 2000s included the fact that: (1) São Paulo airports had 

reached full capacity and experienced rapid growth in air transport demand in parallel 

with other regions of the country; and (2) the enhanced competition stemming from the 

LCC Azul Airlines based at the secondary São Paulo/Campinas Airport. 

Our focus here is on the evolution of network concentration and the potential vulnerability 

to delays and cancellations of the air transport system leading up to and during the “big 

blackout” period. We therefore perform a formal hypothesis test of the relation between 

concentration and the “big blackout” period. In the following, we will present our metrics 

of network concentration and later use them as regressands in an econometric model to 

determine whether the “big blackout” period (before, during and after the event) was 

marked by a higher concentration of airline networks. 

3.1 Data 

The data used in our empirical framework were provided by INFRAERO. These data 

represent 83.8% of all airline passengers in Brazil (Source: dataset, ANAC’s 2008 

statistical yearbook and own calculations). The dataset’s structure comprises monthly 

statistics over the January 2000–December 2010 period for all domestic and international 

enplanements and deplanements at 59 airports operated by the company. The total 

sample size is 132 observations (11 years times 12 months). Domestic traffic comprised 

89.7% of total traffic in the 2010 data. All local and connecting passengers on scheduled 

flights are accounted for in our analysis. Regions with multiple airports – São Paulo, Rio de 

Janeiro and Belo Horizonte – are grouped to form a multiple airport region (MAR). The 

decision to group all airports in multiple airport regions is clearly debatable in light of our 

analysis and warrants further discussion. Indeed, the use of a multiple-airport regions 

(MAR) approach for congestion analysis is much more sensible when airports are close 

enough together to share local scale air traffic control space. We justify this 
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methodological step by confirming that the airports that were grouped belong to either 

the same city (Rio de Janeiro's airports) or the same metropolitan region (Belo Horizonte 

and São Paulo's airports). None of the included airports can be considered a distant 

secondary airport. On the contrary, all groups consisted of primary airports belonging to 

the same region located within each other's catchment area circles with rays under 25 

miles. Finally, all groups included airports that belong to the same official designated area 

of controlled airspace of the city – the “Terminal Maneuvering Area” (TMA) – according to 

the regulations of the Department of Airspace Control. In this sense, we believe that these 

airports may be regarded as close enough to conceive of congestion at the city level. A 

given MAR’s share of traffic is equal to its traffic divided by INFRAERO’s total traffic. This 

share is ultimately used to calculate the network concentration indexes that constitute the 

regressands of our empirical models. 

3.2 Empirical model 

We perform a regression-based event methodology1 to inspect the evolution of the levels 

of network concentration before, during and after the “big blackout”. Binder (1998) 

reports that the event study methodology is commonly used for measuring the price 

reaction of securities to announcements or events in financial markets by investigating 

changes in security prices within a time window. To our best knowledge, Whinston and 

Collins (1992) and Goolsbee and Syverson (2008) were the first to employ the regression-

based event methodology to examine airline markets – in the latter case, with a non-

financial application that examined incumbent airline prices around events of low-cost 

carrier actual and potential entry. By looking at the periods within a window of months 

before, during, and after the event, while controlling for other influences such as demand 

and competition, we are able to formally test whether, ceteris paribus, the “big blackout” is 
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correlated with exaggerated network concentration. Our time window comprises the 

period from eight quarters before the first flight crash (Gol Flight 1907 on September 29, 

2006) up to eight quarters following the second flight crash (TAM Flight 3054 on July 17, 

2007). As discussed above, the period between the crashes is widely acknowledged in 

Brazil as being the period of major flight disruptions caused by the air traffic controllers’ 

slowdown work actions. Our empirical model is therefore the following: 

𝑙𝑔(𝑁𝐶𝑡) ≡ 𝑙𝑛 (
𝑁𝐶𝑡

1 − 𝑁𝐶𝑡
) =  𝛽0 + 𝛽1𝑑𝑜𝑚𝑒𝑠𝑡𝑖𝑐 𝑝𝑎𝑥𝑡 + 𝛽2𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑎𝑥𝑡  

                                              + 𝛽3𝑗𝑒𝑡 𝑓𝑢𝑒𝑙 𝑝𝑟𝑖𝑐𝑒𝑡 + 𝛽4𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟𝑠𝑡  

                                              + ∑ 𝛿𝜏𝑏𝑙𝑎𝑐𝑘𝑜𝑢𝑡𝑡∗+𝜏

+8

𝜏=−8

 

                                             + 𝛾0𝑡𝑟𝑒𝑛𝑑 + 𝛾𝑚𝑑𝑢𝑚𝑚𝑦 𝑚𝑜𝑛𝑡ℎ 𝑚 + 𝜀𝑡 ,  

 

 

( 8 ) 

where 𝑁𝐶𝑡 is the Network Concentration Index – either 𝑵𝑪𝑮𝑰𝑵𝑰 or 𝑵𝑪𝑯𝑯𝑰 – over time; 

𝑙𝑛(𝑁𝐶𝑡) is the logit transformation of 𝑁𝐶𝑡, which is the traditional procedure to fit a model 

when the dependent variable is bounded by 0 and 1; 𝑑𝑜𝑚𝑒𝑠𝑡𝑖𝑐 𝑝𝑎𝑥𝑡  and 

𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑎𝑥𝑡 are the number of domestic and international enplanements plus 

deplanements at INFRAERO’s airports, respectively; 𝑗𝑒𝑡 𝑓𝑢𝑒𝑙 𝑝𝑟𝑖𝑐𝑒𝑡 is a proxy for the 

average jet fuel price (source: ANAC), calculated by dividing total jet fuel costs by the total 

fuel consumption of all domestic airlines; 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟𝑠𝑡 is the the number of 

average effective airline rivals on the domestic routes, which is equal to the inverse of the 

HHI that is based on the market shares of each airline on each route. 

Although the focus of the paper is on the domestic market, we are aware that international 

traffic density creates special conditions for hub development. This is particularly true for 

the major gateways of the country, such as São Paulo/Guarulhos (GRU) and Rio de 

Janeiro/Galeão (GIG). With enough international traffic, carriers have enough economies 
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of scope and density to fortify their operations in the associated airports. In other words, 

network concentration in international travel markets is usually highly correlated with 

network concentration in domestic markets, being therefore a good proxy for unobserved 

airline incentives to fortify network positions at major airports. This is the main 

justification for having international paxt in our list of regressors. 

Historic jet fuel unit cost series and all other variables measured in units of money, e.g. the 

gross domestic product (GDP) used as an instrumental variable, were originally expressed 

in nominal local currency (BRL). They were converted into real monetary figures with 

inflation adjustment using the Consumer Price Index IPCA from the Brazilian Institute of 

Geography and Statistics (IBGE). Real jet fuel unit cost was then transformed from real 

BRL per liters into US dollars per gallons by using the average 2010 BRL/USD exchange 

rate. The idea of this procedure is to permit straightforward comparisons with 

international airlines. 

Our event analysis of the association of the “big blackout” and network concentration in 

Brazil is developed via the sequential 𝑏𝑙𝑎𝑐𝑘𝑜𝑢𝑡𝑡∗+𝜏 dummies (𝜏 = −8, −7, … ,0, … , 7, 8), 

where 𝑡∗ is the beginning of the event window, i.e. the month subsequent to the first air 

crash, October 2006. In other words, the seventeen 𝑏𝑙𝑎𝑐𝑘𝑜𝑢𝑡 binary variables are quarter 

dummies surrounding the period when the air traffic controllers triggered slowdown 

procedures and the “big blackout” was in effect. All dummies are mutually exclusive such 

that the implied effects on the dependent variable given by their coefficients are not 

additive. To check the robustness of our results, we also experimented with less “deep” 

specifications of the time dummies. We therefore employed two alternative specifications: 

(a) the first with only a single dummy variable named “blackout-during”, which was set to 

one only for the months between the two aircraft crashes, i.e. for all months pertaining to 

𝜏 = {0, 1, 2}; and (b) the second with three dummies: the “blackout-before” dummy (where 
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𝜏 = {−8, −7, … , −1 }), the “blackout-during” dummy (where 𝜏 = {0, 1, 2 }), and the 

“blackout-after” dummy (where 𝜏 = {3, 4, … ,8}). 

We also include controls for seasonality (𝑑𝑢𝑚𝑚𝑦 𝑚𝑜𝑛𝑡ℎ 𝑚) and economic trend (𝑡𝑟𝑒𝑛𝑑). 

Airline demand is known to be highly seasonal; in Brazil, the summer (December to 

February) and the mid-year vacation season (July) are the strongest periods. Additionally, 

demand for the air travel in Brazil has grown rapidly within the sample, fueled not only by 

economic growth but also by the growing numbers of middle-class consumers. Because of 

these factors, we include seasonality and trend controls. Finally, 𝜀𝑡 is the error term. Table 

2 presents descriptive statistics of the most important variables used in the econometric 

study. 

 [insert Table 2 about here] 

3.3 Empirical strategy 

In our estimating framework, we posit that demand (either domestic or international) and 

competition (effective competitors) are potentially correlated with unobserved 

components of network concentration, i.e. with the unobserved error term 𝜀𝑡 in Equation 

(8). For example, time-varying factors of income distribution and industrial geographic 

dispersion across the country are potential unobserved determinants of network 

concentration that may be correlated with any of these variables. Because our main 

concern is to correctly estimate coefficients associated with demand and competition to 

obtain a consistent partial effect estimate of the blackout dummies, we must thus employ 

an instrumental variables estimator (for comparison purposes, we present the results of 

the OLS estimation in the Appendix). Our identification strategy used key exogenous 

demand shifters as instrumental variables. In particular, as instruments we used gross 

domestic product (GDP), current and lagged one period, and the proportion of credit 
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operations relative to GDP (total credit in the economy and total industrial credit, all 

lagged one period). The structural motivation for these instruments relies on the fact that 

they are key demand drivers. It is acknowledged that the expansion of credit availability 

during the 2000s played a major role in allowing not only consumers to increase their 

demand for durable goods and air travel but also companies to expand their size and 

operations. In the case of the 𝑵𝑪𝑮𝑰𝑵𝑰 index, due to its lower sample variability, we also had 

to use the share of international passengers (relative to total passengers in Brazil and 

lagged one period) as an additional instrument. 

We employed tests of the validity and relevance of the proposed instrumental variables to 

analyze the quality of the identification strategy described above. First, the validity of the 

full set of over-identifying conditions was challenged by Hansen J tests. This test checks 

whether the model is overidentified, i.e. whether the number of instruments excluded 

from the equation is statistically larger than the number of included endogenous variables. 

Rejection of the null hypothesis implies that instruments do not satisfy the orthogonality 

conditions, and one obvious reason is that they are not truly exogenous. For both 𝑵𝑪𝑮𝑰𝑵𝑰 

and 𝑵𝑪𝑯𝑯𝑰 cases, the Hansen J tests did not reject orthogonality. Note that the Hansen J 

test has a non-conservative null hypothesis because it assumes orthogonal instruments. It 

is non-conservative because is it well known in the literature that good instruments are 

typically hard to find. To increase the power of the test and thus avoiding Type II error – 

acceptance of a false null – we adopted a significance level of 25%. Even with stricter 

significance levels – in this case, a broader critical region – we could not reject the null 

hypothesis in any situation. 

Second, the relevance of the proposed set of instruments was challenged by means of 

underidentification tests. The underidentification test is a LM test of whether the equation 

is identified, i.e. that the excluded instruments are “relevant” or correlated with the 

endogenous regressor uses. The test employs the Kleibergen-Paap rk LM statistic (KP). 
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The KP statistics for 𝑵𝑪𝑮𝑰𝑵𝑰 and 𝑵𝑪𝑯𝑯𝑰 allowed us to reject the null of underidentification 

at the 10% level. 

The estimation method employed is the equation-by-equation two-step feasible efficient 

generalized method of moments (2SGMM) estimator with statistics robust to arbitrary 

heteroskedasticity and autocorrelation. Given the monthly periodicity of the dataset, the 

bandwidth used in the estimation with a Newey-West (Bartlett) kernel was set equal to 

12. Angrist & Pischke (2008) suggest the use of LIML as a crosscheck of over-identified 

estimates. They specifically refer to crosschecking 2SLS with LIML results, arguing that 

LIML is less precise but also less biased than 2SLS. Because we use 2SGMM, we 

crosschecked the robustness of our results with the two alternative estimators. The 

results are available in the Appendix (2SLS and LIML) and were very similar. 

3.4 Estimation results 

Table 3 presents the estimation results for the empirical model of network concentration 

in Brazil. All estimated values represent the elasticity of the dependent variable associated 

with the respective regressor and extracted at the sample mean of regressand and 

regressor. As it is not a log-log specification, estimated elasticities are not equal to the 

estimated coefficients. We prefer reporting elasticities rather than coefficients because 

they are invariant to the scale of variables and have straightforward interpretations. As 

Table 3 shows, we experimented with different specifications for the regressions of each 

concentration index employed, i.e. 𝑵𝑪𝑯𝑯𝑰 (Columns 1-3) and 𝑵𝑪𝑮𝑰𝑵𝑰 (Columns 4-6). The 

difference between columns within the same regressand is related to how “deep” we 

specified the dummies controlling for the blackout period, as discussed above. Hence, in 

Columns (1) and (4) we have only the “blackout-during” dummy, in Columns (2) and (5) 

we have the “blackout-before”, “blackout-during” and the “blackout-after” dummies and, 
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finally, in Columns (3) and (6) we have the sequential quarter dummies “blackout t* + 𝜏”, 

{τ = -8,..., 0,...,+8}. 

Note that the Adjusted R-Squared of the 𝑵𝑪𝑯𝑯𝑰 specifications are systematically higher 

than the equivalent 𝑵𝑪𝑮𝑰𝑵𝑰 specifications. For example, the Adjusted R-Squared in Column 

(1) is 0.5087, compared with 0.9406 in Column (4). This fact is more indicative of the 

notably lower variability of the 𝑵𝑪𝑮𝑰𝑵𝑰 series than the actual lower quality of adjustment 

of its regressions relative to the 𝑵𝑪𝑯𝑯𝑰. In addition, it is notable that the RMSE of all 

𝑵𝑪𝑮𝑰𝑵𝑰 specifications are lower. 

A core result of our estimations is that higher traffic volumes in the domestic market tend 

to decrease network concentration whereas higher international traffic flows go in the 

opposite direction, i.e. to increase such concentration. Another possible ex-ante 

expectation would be a positive association between domestic traffic and network 

concentration. Although a potentially reasonable relation, a positive association was not 

confirmed by our main results. This may be indicative of capacity constraints being more 

binding to the domestic than to international operations and thus revealing the 

preferences of airport management authorities in the two major international gateways. 

Additionally, it may reveal that carriers perceive that a higher potentiality for traffic 

growth is not present in the major metropolitan areas but is latent in medium-sized cities 

across the country. 

This result is robust to variations in all specifications of Table 3 – and also specifically in 

our preferred specifications in Columns (3) and (6). Indeed, the variables “domestic pax” 

and “international pax” have coefficients with negative and positive signs, respectively, 

and are both statistically significant across most columns. We interpret these findings as 

an indication that international air traffic in Brazil tends to be channeled through a few 

major gateway airports – particularly through São Paulo-Guarulhos International Airport 

(GRU). We distinguish between domestic and international passenger traffic because 
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(based on the network design of carriers aiming at economies of scope) the availability of 

international flights typically constitutes a considerable source of domestic traffic – and of 

network concentration as a result – due to the competitive advantages of the international 

gateway airports in contrast to exclusively domestic airports. However, domestic traffic 

increases appear to be pushed by the attraction of demand at medium-sized airports 

rather than major hubs such that concentration tends to decrease as domestic demand 

grows. 

 [insert Table 3 about here] 

With respect to the explanatory variables of costs and competition (“jetfuel price” and 

“effective competitors”), the results were not statistically significant in general. We believe 

that multicolinearity may have inflated the standard errors of these coefficients as 

indicated by the VIF statistics discussed above. We experimented with dropping the 

regressor domestic pax and the results of both variables became statistically significant in 

almost all specifications, which indicates that these variables may have an important 

influence on network concentration but only via the domestic demand variable (results 

presented in the Appendix). Dropping domestic passenger did not cause our RESET 

statistics to be damaged but we believe this model is misspecified. Additionally, in this 

experiment, the KP statistics were affected, showing that some instruments were relevant 

only to identify the domestic pax variable. Disregarding the statistical significance and 

focusing only on estimated signs, our results suggest that fuel cost hikes (jetfuel price) 

tend to increase concentration and that enhancements in competition (effective 

competitors) tend to decrease it. We therefore conclude that there is only rudimentary 

evidence on the relation between those variables and that further investigation is needed.  

With respect to our main focus, the “big blackout” dummies, we have a clear indication 

that overall the network of airlines in the sample period was more concentrated both 

before and during the blackout event than in the remainder of the dataset. Because 
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network concentration was pointed to as a possible cause for the vulnerability of the air 

transport system in Brazil during the “big blackout”, we therefore consider these findings 

as the most important of our analysis. First, Columns (1) and (4) show that the “blackout-

during” dummy had a positive sign and was statistically significant in both cases (0.0324 

and 0.1088, respectively). When decomposing the effect of that dummy into three 

different periods (“blackout-before”, “blackout-during” and “blackout-after”, in Columns 2 

and 5), the pre-blackout period is certainly the most robust across specifications. When 

breaking down the effects into subsequent quarter dummies – Columns 3 and 6, our 

preferred specifications – we can see the pattern of evolution of network concentration 

more clearly. Indeed, there is evidence that network concentration increased at least six 

quarters previous to the actual blackout period and stayed high until at least two quarters 

after the beginning of the blackout. This pattern is clearer for 𝑵𝑪𝑯𝑯𝑰 but is also observed 

for the 𝑵𝑪𝑮𝑰𝑵𝑰 in almost all quarters. Delving deeper, we conducted Wald tests of the joint 

nullity of all quarter dummies either before t* or after t* for both concentration indexes. 

All hypothesis tests soundly rejected the null of joint nullity of coefficients and therefore 

provided evidence to support the suggested pattern of evolution (the calculated F-

statistics for the tests of joint nullity of the seventeen dummy variables in Columns (3) and 

(6) were 450.24 and 379.99, respectively. Both tests soundly rejected the null hypothesis). 

Notably, the results of Columns (3) and (6) have the highest R-squared and the lowest 

RMSE among the different alternatives.  

These results may indicate that higher network concentration preceded the blackout 

period and may have contributed to cause and aggravate the problem. Although the 

slowdown of air controllers was the salient trigger for the “big blackout” in Brazil, we may 

have evidence that network concentration also played an important role in aggravating 

flight disruptions. Alternatively, we may at least conclude that it was a period when the 

network was more dependent on – and thus more vulnerable to – the operating conditions 

of the major airports in Brazil. 
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Note that from quarter t* + 3 to quarter t* + 5, both models suggest that there was a 

decrease in network concentration. This result may be interpreted as a reaction of carriers 

attempting to reorganize their networks and engaging in crisis management while aiming 

to relieve the tight schedule operations of that time. They might have accomplished such a 

“dehubbing” pattern by cutting some flight frequencies at major airports. 

Figure 3 illustrates the estimated pattern of the evolution of network concentration by 

presenting the evolution of the estimated coefficients of the blackout quarter dummies 

from Columns (3) and (6). In other words, we present the evolution of the estimated 

percent changes of both indexes during the time window under consideration. Note the 

significant drop from t* + 3 in both series. 

[insert Figure 3 about here] 

The post-blackout period results also merit some discussion. After the fifth quarter from 

the beginning of the blackout period, the alternative models apparently diverge with 

respect to the long-run consequences for network concentration in Brazil. Whereas the 

“blackout t* + 𝜏” dummies (𝜏 = 6, 7 and 8) have no statistical significance for the 𝑵𝑪𝑯𝑯𝑰 

specification (Column 3), they are clearly significant and negative for the 𝑵𝑪𝑮𝑰𝑵𝑰 

specification (Column 6). However, only the 𝑵𝑪𝑯𝑯𝑰 presented trend effects that were 

statistically significant. We therefore cannot infer much from these results and again 

suggest further investigation of the subject. 

With respect to the seasonality dummy variables, Table 3 shows that, conditional on the 

actual domestic and international traffic movements, airline network concentration tends 

to be higher during periods of higher concentrations of business travelers in total demand. 

Indeed, the periods March-June and August-November are typically associated with more 

intense business-related air travel in Brazil. Concentration in this case may be a natural 

consequence of carriers’ strategies that re-allocate flights from tourist destinations to 
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routes connecting major cities, thus fortifying their positions and enhancing vertical 

product differentiation related to schedules to attract time-sensitive business travelers. 

Conclusion  

This paper aimed to empirically investigate the determinants of airline network 

concentration as applied to an air transport system subject to congestion and massive 

flight disruptions, i.e. the “big blackout” of Brazil in 2006-2007. We performed a 

regression-based event study with sequential quarter dummy variables to estimate the 

dynamic patterns of concentration before and after the “big blackout”. We employed the 

Network Concentration Gini Index (𝑵𝑪𝑮𝑰𝑵𝑰) and also suggested a novel – and easy to 

construct – Network Concentration Herfindhal-Hirschman Index (𝑵𝑪𝑯𝑯𝑰) as regressands 

in our econometric model.  

Our main finding was that the airline network was more concentrated both before and 

during the “big blackout” event than in the remaining sample period, which suggests that 

concentration may be one reason for the vulnerability of the Brazilian air transport system 

during the period. In fact, we find that concentration was higher from at least six quarters 

before the blackout until two quarters after it and was followed by a quick decline toward 

the end of the decade. This latter result may be interpreted as a reaction of carriers 

attempting to reorganize their networks from a crisis management perspective and aiming 

at providing relief in contemporaneous tight-scheduled operations. The carriers actually 

accomplished such management by cutting some flight frequencies at major airports. 
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